□陈洪斌
职业院校一体化医学仪器技能实验平台教学体系构建研究
□陈洪斌
摘要:各种先进精准的医学检查治疗仪器已经服务于人们的生活,为培养、锻炼学生在校期间的动手实践和实验能力,一体化医学仪器技能实验平台构建是必要的;其主要有实验室体系构建、理论教学体系构建、辅助教学体系构建、辅助管理体系构建和技能量化评价体系构建等五个大部分,其中理论教学体系构建涵盖通识课程、基础课程、专业课程、限定选修及其它课程设计工作,辅助教学体系构建涵盖通识课程、基础课程、专业课程、限定选修及其它课程各种实验教学内容、形式等设计工作。通过课程模块的学习为学生真正掌握理论分析与设计、医学诊疗设备操作与故障诊断等能力奠定坚实的理论基础。
关键词:一体化;医学仪器;实验平台;理论教学体系
职业院校一体化医学仪器技能实验平台“教学体系构建”内容的相关研究课题,是在医学院校职业化转型过程中出现的历史阶段性产物,是本科专业教学体系职业化改革的必然趋势。“改”就需要“变”,改变的程度不能仍然依附于现有本科专业教学体系而进行的小修小改、修枝剪丫,改革要适应于职业化人才培养目标,要努力形成“创新、创业”双创型人才培养模式。
生物医学工程专业 (Biomedical-Engineering,简称BME)是一个含电子学、医学、化学、材料学等的学科交叉型专业[1][2]。在一体化实验平台建设的过程中,加强BME理论课程设置是非常必要的[3]。目前还没有与之相配套的教学体系构建内容直接对接使用,故而课题组根据BME专业发展方向及人才培养模式特点,提出了与实验平台相配套的理论教学中课程体系建设问题。学生要有一定的基础医学和电子学知识基础,如生物医学传感技术、医学仪器原理、影像技术等课程,与之相关专业课程的学习是桥梁。通过课程模块的学习为学生形成医学仪器原理分析与构成设计能力、诊疗设备操作能力、器械故障诊断与维护等能力而奠定坚实的理论基础。
在职业院校一体化医学仪器技能实验平台构建方案中,“教学体系构建”为其重要构成部分之一。教学体系构建涵盖通识课程、基础课程、专业课程、限定选修及其它课程设计工作。含教学体系构建的一体化实验平台结构示意框图,如图1所示:
图1 一体化医学仪器技能实验平台结构框图
一体化实验平台教学体系构建主要环节为:通识课程、基础课程、专业课程、限定选修及其它课程合理、适当设置等设计工作;该工作中课程设计内容、形式、教学手段与方法等各教学环节不能简单的被修改或近似等同于现有的课程理论教学体系,要真正体现出BME职业化教育的特色,更加注重学生个体实践技能提升的培养。
(一)理论教学体系构建方案设计基本原则及结构框架
坚持以马克思主义为指导,科学、系统地阐述课程的基本理论和基本知识,科学处理课程体系与学科体系的关系,注意课程之间的内容衔接,遵循由易到难、由简到繁、由浅入深、循序渐进的认知规律,注意吸收新知识与新成果。贯彻理论知识传授与技能培养并重的方针,在教学内容和课程结构上做出相应调整,适当地增补学科的新进展、新理论和新概念,对各学科之间重复或交叉的内容做出相应的删减或调整,力求使教学大纲更贴近现代医学课程的要求。
理论教学体系构建方案设计结构层次框图,如图2所示。
一体化实验平台理论教学体系构建中,与BME专业相关、应开出课程设置为以下内容:
通识课程:含计算机应用基础;
基础课程:含高等数学、普通物理学、机械制图、C语言程序设计、概率论与数理统计、电路分析、线性代数、模拟电子技术、复变函数与积分变换、电工学、脉冲数字电子技术、系统解剖学、生理学、工程力学;
专业课程:含数据库程序设计、软件技术基础、自动控制原理、微机原理与接口技术、机械设计基础、单片机技术与应用、生物医学电子学、数字信号处理、医用仪器原理、检验分析仪器、医用影像设备学;
限定选修课程:含数学实验、文献检索、科研设计、医学图像处理、金工实习、医学仪器实验、医用仪器管理与维护、软件综合设计、单片机综合设计。
图2 理论教学体系构建方案设计结构层次框图
(二)辅助教学体系构建方案设计基本原则及结构框架
平台辅助教学体系主要构建环节为:通识课程、基础课程、专业课程、限定选修及其它课程等辅助实验教学设计工作;辅助实验教学设计内容,要体现出生物医学工程专业职业化教育的特色,更加注重学生个体实践技能能力的培养。实验技能即实验操作技能、实验数据处理能力、电路设计与制板能力、小型智能医学仪器的设计与实践应用能力的提高,为培养适应社会发展、适应医疗设备应用要求的复合型人才。
辅助教学层次设计结构框图,图3所示:
图3 辅助教学层次设计结构框图
实验教学环节应辅助于相应课程理论教学内容,即在课程所在实验场所内进行实践活动。不同课程群对应不同实验场所,下面列举部分实验室功能与各课程群间对应关系:
通识课程实验室:计算机应用基础实验、数学实验、科研设计;
基础课程实验室:普通物理学、机械制图、C语言程序设计、电路分析、模拟电子技术、电工学、脉冲数字电子技术;
专业课程实验室:数据库程序设计、软件技术基础、微机原理与接口技术、机械设计基础、单片机技术与应用、医用仪器原理、检验分析仪器、医用影像设备学;
常规医学仪器设备实验室:金工实习、医学仪器实验、医用仪器管理与维护、软件综合设计、单片机综合设计。
(一)理论教学体系构建方案设计——实践锻炼与认知过程探究
认知过程是对未知世界、未知领域的探索过程,通常以理论文献查找为前站。医学仪器技能养成的认知过程,则要通过现有理论进行相应教学设计,让医学生首先了解医学仪器设备有记录以来的发展历史,其次能够识别医学仪器设备种类与分类,使其在该领域产生浓厚的兴趣,最后再去深层次探索医学仪器设备带给人类的益处。实践过程,就是在了解与熟悉医学仪器构成、原理、使用功能等基础上,按着指导教师的引导对各种医学仪器设备进行实践应用锻炼过程,进而根据仪器设备故障外观,能够提出初步诊断等问题。理论教学体系构建方案设计中实践锻炼与认知过程是首要设计环节。
(二)理论教学体系构建方案设计——通识课程设置必要性探究
以本科课程为主,进行通识课程理论知识学习。如《医疗器械认知实践》课程应该作为BME通识课程,让学生去学习;该课程具有“广而浅”的特点,利用这种特殊性,让学生在还不懂专业知识的同时步入了医学仪器技能培养的领域内,通过逐渐接触专业领域内常识性问题,让学生知道自己将来的学习方向[4],提升学生的学习兴趣。理论教学体系构建方案设计中通识课程的设置是必要的。
(三)理论教学体系构建方案设计——基础理论知识学习探究
以本科课程为主,进行专业基础课理论知识学习。理论教学体系构建方案中,专业基础课理论知识体系建设起到支撑作用,其促进知识体系融合,形成闭合知识链条。教材建设是前期工作,选择知识体系认知设计比较好的教程,或者课题组自行编选适用BME学生使用的教材;合理设计,增、删、减具体教学内容,提炼教材的适用度。课程群建设是基石,如普通物理学、电路分析与综合、电子学基础等,形成一个基础知识认知课程体系,支撑医学仪器技能训练计划工程的基础课理论知识学习。
(四)理论教学体系构建方案设计——深层次理论知识学习探究
以本科课程为主,进行专业课深层次理论知识学习。综合应用能力的提升,基本实验技能的养成,必然要进行诸如传感器学、集成电路、CPLD、单片机、程序设计、Matlab、医学信号采集与医学图像处理等专业课深层次理论知识的学习;否则,无法满足时代发展对医学仪器设备更新换代的需求。基础知识的学习是认知过程的前身,专业课深层次理论知识学习是后事之师。
(五)理论教学体系构建方案设计——先进理论与技术引入课堂教学探究
在本科课程学习基础上,将先进理论与技术引入课堂教学。BME教学体系的重要组成部分包括:电子应用技术、计算机应用技术、信号测量分析处理技术和基础医学知识等,其具有理论性、技术性和实践性都很强的特点;同时产品开发周期短、技术更新快,有必要将更为先进的、前沿技术理论引入课堂,培养学生具有一定分析问题、解决问题的能力[5]。
(一)辅助教学系统设计——基础验证性实验问题研究
基于实验平台辅助教学系统,以本科课程、基础验证性实验设计为基础。根据实验数量、名称、内容、目标要求等,进行电路实验设计与开发、电工学实验设计与开发、模拟与数字电子技术基础实验设计与开发等研究。目的明确,力求基础,养成思考问题习惯、培育实践动手能力、促进潜在开发意识、形成基本职业技能。
(二)辅助教学系统设计——虚拟仪器开发平台研究
基于实验平台辅助教学系统,开发虚拟仪器平台。实验室虚拟仪器工程平台(LabVIEW-Laboratory Virtual Instrument Engineer-ing Workbench),由美国NI公司推出,且以图形化编程语言为主的一种虚拟仪器开发平台;以LabVIEW为契机,可模拟实现常规医学电子仪器功能的基础上,并可适当开发出更多功能,应用虚拟技术来处理医学信号,使医学电子仪器模拟设计变得更加方便[6]。也可依托嵌入式医学仪器系统,充分利用该系统功能可靠、性价比高等优点[7],开发相应产品,最后由模拟仿真到产品生产。虚拟仪器平台开发能力高低,是测试学生医学仪器实践技能的最佳手段。
(三)辅助教学系统设计——软件仿真实验问题研究
基于实验平台辅助教学系统,以本科课程为基础,进行各门课程的实验数据仿真实验设计。将实验室中的各类实验数据,进行验证性研究,对如何能够克服工作环境、人为、仪器设备等因素造成的误差问题进行探讨;在软件上是否能够跑通,如何选件,对电路设计进行可行性分析等,节省时间、节约成本,防止器件使用中的浪费,减少软硬件间调试问题。软件仿真实验设计技巧的熟练应用,是医学生对医学仪器软、硬件综合应用能力提升的体现。
(四)辅助教学系统设计——设计性实验问题研究
基于实验平台辅助教学系统,以本科课程、设计性实验为核心。根据实验设计意义、目标要求等,进行传感器学实验设计与开发、集成电路实验设计与开发、CPLD实验设计与开发、单片机实验设计与开发、程序设计实验设计与开发、软件仿真与Matlab实验设计与开发、医学信号采集与医学图像处理实验设计与开发、小型医学仪器实验设计与开发等研究。以问题设计为中心,开展探究式实验教学,促使学生第一时间了解学科最前沿科技进展,培养潜在科研意识[8]。
(五)辅助教学系统设计——医学仪器设备调试与操作水平能力提升研究
基于实验平台辅助教学系统,提升仪器设备调试与操作者应用水平。操作者必须了解、掌握其使用原理和应用方向,以虚拟仪器使用为例:虚拟仪器操作面板,与常规仪器设计具有相似性,如开关、指示灯等控制部件的图形化表示,通过操作、控制虚拟面板,从而完成对被测信号的采集、分析、存储、显示及输出等功能[9]。仪器设备基本信息、使用功能等基本知识的掌握,是医学生提高医学仪器设备调试与操作水平能力的前提。
(六)辅助教学系统设计——医学仪器设备故障诊断与维护能力养成研究
基于实验平台辅助教学系统,培养仪器设备故障诊断与维护者技能水平。维护者必须熟悉各类仪器设备结构构成、工作原理,以虚拟仪器使用为例:虚拟仪器主要由硬件和软件两大部分构成,虚拟医学电子仪器以计算机为核心,利用软件来完成生物医学信息的采集、处理、分析、显示等功能[10]。仪器设备结构构成、工作原理等知识的掌握,是医学生提高医学仪器设备故障诊断与维护能力养成的前提。
探索多种教学方法,提高学生的学习热情与效率,提高教学效果。如通过启发式教学,由原理结论教学转移到设备应用教学上来,再反作用于原理学习,调动学习积极性,提高学生解决问题的能力;采用比较教学法,让学生发现不同原理设备的共同点和各自设备自身的特点,引导学生发现医学仪器各原理及各设计方法的本质;争议讨论式教学,针对有争议的授课内容,安排学生课下查证,课上讨论,促进学生积极思考,激发学生学习的潜能;教学中要发挥网络技术优势,将教学融入网络世界中去,克服传统教学内容更新慢较慢等弊端[11]。
综上所述,为培养适应社会医疗服务发展需求,适应医疗设备辅助治疗、康复、预防、保健等应用功能要求的技能型人才,依托一体化医学仪器技能实验平台,提出教学体系构建设计方案是必要的;其为高校一体化医学仪器技能实验平台构建设计工作主体构成部分之一。
参考文献:
[1]王保华.生物医学测量与仪器(第二版)[M].上海:复旦大学出版社,2009.
[2]陈浩,李本富.用MSP430实现腕式心电检测仪的研制[J].第四军医大学学报,2004(5):427-429.
[3]陈洪斌.高校一体化医学仪器技能实验平台建设探析[J].职业技术教育,2014(32):53-54.
[4]胡秀枋,等.《医疗器械认知实践》教学模式剖析[J].生物医学工程学进展,2015(1):60-62.
[5][11]吴效明,等.加强实验实践教学体系建设 培养理工科综合型人才[J].医疗卫生装备,2010(2): 115-117.
[6][9][10]刘艳,等.基于LabVIEW的医学电子仪器开发[J].医疗装备,2010(8):5-6.
[7]陈露晨.基于嵌入式系统的医学仪器的设计[J].医疗卫生装备,2005(9):64-65.
[8]徐灿华,等.加强第一任职能力条件下《医学仪器》课程教学探讨[J].西北医学教育,2014(4): 715-718.
责任编辑时红兵
作者简介:陈洪斌(1973-),男,吉林白城人,吉林医药学院副教授,研究方向为原子与分子物理学、大学生思想政治教育与管理。
基金项目:吉林省高等教育学会课题“一体化医学仪器技能实验平台的建设与实践研究”(编号:JGJX2015C83),主持人:陈洪斌。
中图分类号:G712
文献标识码:A
文章编号:1001-7518(2016)11-0073-04