ClC-2在癫发病机制中的研究进展

2016-07-10 04:35田香珠林盈盈综述葛宇星审校
同济大学学报(医学版) 2016年2期
关键词:羧基兴奋性氯离子

田香珠, 林盈盈 综述, 葛宇星 审校

(同济大学附属第十人民医院神经内科,上海 200072)



·综 述·

田香珠1, 林盈盈1综述, 葛宇星2审校

(同济大学附属第十人民医院神经内科,上海 200072)

ClC-2是一种电压门控氯通道,在稳定细胞膜电位、调节细胞兴奋性方面有重要意义。但其在癫发病机制中所起的作用仍不清楚。本研究就ClC-2的各项研究进展,包括ClC-2的结构与功能、ClC-2在癫动物模型中的改变以及在癫患者中ClC-2基因表达异常与癫发病的相关性进行综述。

ClC-2; 癫; 突触后抑制

1 ClC-2的结构特点

由ClCN2基因编码的ClC-2蛋白,是由907个氨基酸组成,分子量为99000,与ClC-0,ClC-1通道蛋白有50%的同源性[3]。目前,人体ClC-2高分辨率的三维结构仍不明确,但是,可以从其他有关ClC型氯通道研究中得到启示。Weinreich等[4]提出,ClC-2是类似二聚体的结构,Mindell等[5]用冷冻电镜术对大肠杆菌进行分析得到CIC型氯通道是同源二聚体结构。Dutzler等[6]从沙门鼠伤寒沙门氏菌和大肠杆菌提出2个原核ClC氯通道的X-射线结构,证明其是双孔二聚体的通道。

ClC-2包括快、慢两个通道,它们有着不同的门控特性与电压依赖性。ClC-2还具有负反馈调节因子: SPAK(SPS1相关脯氨酸-丙氨酸激酶)和OSR1(氧化应激反应蛋白激酶1),它们可以抑制Cl-通道,阻止Cl-离子外流,调节细胞体积变化[7]。此外,ClC-2羧基末端还有两个胱硫醚-β-合成酶(CBS1和CBS2)区域,三磷酸腺苷(ATP)和其他核苷酸都与之绑定。CBS区域主要由β-α-β-β-α的二级结构模式构成,折叠成一个球状的三级结构,其中包括三个反向平行的β折叠和两个α螺旋。ClC-2羧基末端的主要作用为调节门控通道[3]。

2 ClC-2的功能特点

ClC-2电压门控通道在静息状态下是关闭的,只有在超极化的时候(-40~140mV)被激活,例如,抑制GABAergic后,[Cl-]i增加。活化后,恢复正电位时产生一个非常缓慢的电流,门控通道呈现接近于零的最低开放。ClC-2的开放需要通过超极化来去除外部Cl-结合位点内的羧酸基团。ClC-2包括快、慢两个通道,快通道主要受细胞外氯离子浓度的影响,慢通道则受各种生理条件影响,如膜电位、氯离子、pH、温度及ATP等,同时,慢通道的开启也能够促进快通道的开放。ClC-2作为一个强大的内向整流电导,宏观层面上,氯电流显示缓慢激活过程,即使脉冲>50s也不会衰变。当外部的pH值降至6.5时,氯电流增强,抑制进一步酸化。类似的功能已经在非洲爪蟾卵母细胞和哺乳动物细胞中观察到。ClC-2羧基末端可以减缓通道激活时间,切除或修改羧基末端可加速门控通道激活、失活时间,证明了其稳定神经元兴奋性作用。

ClC-2在神经元和神经胶质细胞中均有表达。在神经元中,ClC-2通过介导氯离子内流和影响神经元的兴奋性输入电阻来直接控制兴奋性,ClC-2提供的流出通道维持GABAA受体的突触抑制。而Ratté等[8]提出,不同于原先减少Cl-内流、增加Cl-跨膜梯度来促进GABAAR介导的突触抑制,在生理条件下,ClC-2通道通过泄漏Cl-,直接降低神经元的兴奋性。近期有学者发现,在秀丽隐杆线虫内,ClC-2的同源基因clh-3,可以通过调节其特定的神经元活动兴奋性,从而控制产卵行为。clh-3功能上调,抑制兴奋,抑制产卵;功能下调,促进兴奋,促进产卵。有趣的是,clh-3通道并不受GABAA受体介导,而是通过细胞内低氯环境直接抑制其兴奋性。这种机制有利于神经元氯离子内流守恒[9]。在神经胶质细胞,ClC-2的缺失可以造成GlialCAM和MLC1的损失,从而导致脑白质变性。这可能是GlialCAM作为ClC-2通道的辅助亚基,调节其靶向细胞与细胞间的路口,并修改其功能特性。有报道: cereblon和GlialCAM是ClC-2的两个不同亚基,其改变可以影响ClC-2的门控配置[10-11],而美沙酮可以抑制ClC-2[12]。

3 ClC-2与癫

4 结 语

[1] Khirug S, Yamada J, Afzalov R, et al. GABA-ergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1[J]. J Neurosci, 2008,28(18): 4635-4639.

[2] Wan L, Liu X, Wu Z, et al. Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons[J]. Neurosci Bull, 2014,30(5): 866-876.

[3] Bi MM, Hong S, Zhou HY, et al. Chloride channelopathies of ClC-2[J]. Int J Mol Sci, 2014,15(1): 218-249.

[4] Weinreich F, Jentsch T J. Pores formed by single subunits in mixed dimers of different CLC chloride channels[J]. J Biol Chem, 2001,276(4): 2347-2353.

[5] Mindell JA, Maduke M, Miller C, et al. Projection structure of a ClC-type chloride channel at 6.5 A resolution[J]. Nature, 2001,409(6817): 219-223.

[6] Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity[J]. Nature, 2002,415(6869): 287-294.

[7] Warsi J, Hosseinzadeh Z, Elvira B, et al. Regulation of ClC-2 activity by SPAK and OSR1[J]. Kidney Blood Press Res, 2014,39(4): 378-387.

[8] Ratte S, Prescott SA. ClC-2 channels regulate neuronal excitability, not intracellular chloride levels[J]. J Neurosci, 2011,31(44): 15838-15843.

[9] Branicky R, Miyazaki H, Strange K, et al. The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. elegans by modulating motor neuron excitability[J]. J Neurosci, 2014,34(3): 764-775.

[10] Barrallo-Gimeno A, and Estevez R. GlialCAM, a glial cell adhesion molecule implicated in neurological disease[J]. Adv Neurobiol, 2014,8: 47-59.

[11] Hoegg-Beiler MB, Sirisi S, Orozco IJ, et al. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction[J]. Nat Commun, 2014,5: 3475.

[12] Cuppoletti J, Chakrabarti J, Tewari KP, et al. Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents[J]. Am J Physiol Cell Physiol, 2014,307(5): C479-C492.

[14] Ge YX, Liu Y, Tang HY, et al. ClC-2 contributes to tonic inhibition mediated by alpha5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy[J]. Neuroscience, 2011,186: 120-127.

[15] Rinke I, Artmann J, Stein V. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion[J]. J Neurosci, 2010,30(13): 4776-4786.

[16] Sander T, Schulz H, Saar K, et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies[J]. Hum Mol Genet, 2000,9(10): 1465-1472.

[17] D’Agostino D, Bertelli M, Gallo S, et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy[J]. Neurology, 2004,63(8): 1500-1502.

[18] Depienne C, Bugiani M, Dupuits C, et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study[J]. Lancet Neurol, 2013,12(7): 659-668.

[19] Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies[J]. Nat Genet, 2003,33(4): 527-532.

[20] Saint-Martin C, Gauvain G, Teodorescu G, et al. Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy[J]. Hum Mutat, 2009,30(3): 397-405.

[21] Blanz J, Schweizer M, Auberson M, et al. Leukoencephalopathy upon disruption of the chloride channel ClC-2[J]. J Neurosci, 2007,27(24): 6581- 6589.

[22] Klassen T, Davis C, Goldman A, et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy[J]. Cell, 2011,145(7): 1036-1048.

[23] Foldy C, Lee SH, Morgan RJ, et al. Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2[J]. Nat Neurosci, 2010,13(9): 1047-1049.

[24] Cortez MA, Li C, Whitehead SN, et al.Disruption of ClC-2 expression is associated with progressive neurodegeneration in aging mice[J]. Neuroscience, 2010,167(1): 154-162.

Research progress of ClC-2 in pathogenesis of epilepsy

TIANXiang-zhu1,LINYing-ying1,GEYu-xing2

(Dept. of Neurology, Tenth People’s Hospital, Shanghai 200072, China)

ClC-2 is a member of the supergene family of voltage-gated chloride channels. It is proved to be inwardly rectifying, and plays an important role in setting the intracellular chloride concentration in neurons expressing inhibitory GABAA receptors. The role of ClC-2 in epilepsy is still not clear. Here, we review the structures and functions of ClC-2 and changes of ClC-2 in experimental epileptic models. This article try to analyze the correlation between ClC-2 and epilepsy.

ClC-2; epilepsy; postsynaptic inhibition

10.16118/j.1008-0392.2016.02.027

2015-04-22

国家自然科学基金青年项目(81301104)

田香珠(1988—),女,硕士研究生.E-mail: dxtxzdxtxz@163.com

葛宇星.E-mail: yuxingge2009@gmail.com

R 741

A

1008-0392(2016)02-0118-04

猜你喜欢
羧基兴奋性氯离子
多轴持续应力下混凝土结构的耐久性研究
不同氯盐溶液中钙矾石与氯离子结合的研究
混凝土中结合氯离子研究综述
准备活动在田径运动中的作用
采用响应面模拟法优化过氧化氢提高腐殖酸羧基含量的反应条件
经颅磁刺激对脊髓损伤后神经性疼痛及大脑皮质兴奋性的影响分析
双核六羧基酞菁铝的合成及其催化活性研究
低渗透黏土中氯离子弥散作用离心模拟相似性
兴奋性氨基酸受体拮抗剂减轻宫内窘迫诱发的新生鼠Tau蛋白的过度磷酸化和认知障碍
表面羧基化对聚合物微气泡性能的影响*