【摘要】从小学数学众多知识点中遴选出更具基础性、生成性和发展性的核心知识,并着眼于核心素养的培养和发展进一步探索相应的教学策略,十分重要。遴选并确立核心知识,一要在展开过程中考察内涵丰富性,二要在拓展过程中考察自主生长性,三要在整理过程中考察结构关联性,四要在应用过程中考察基本解释力。将知识转化为能力,将能力内化为素养,基本的途径有两个:引领探究和加强应用。
【关键词】核心素养;核心知识;遴选策略;教学方法
【中图分类号】G623.5 【文献标志码】A 【文章编号】1005-6009(2016)21-0010-03
【作者简介】黄为良,南京东方数学教育科学研究所(南京,210036),高级教师,苏教版小学数学教材核心作者。
一
随着基础教育课程改革的不断深入,人们越来越关注对学生终身发展具有不可或缺影响的“核心素养”的意义和价值,强调教育应由传统的以知识结构为核心转向以素养发展为核心。新近颁布的《中国学生发展核心素养(征求意见稿)》对核心素养的内涵给出了较为清晰的描述。“走向核心素养”正在成为新一轮课程改革的推进重点和发展方向。
就小学数学而言,落实“走向核心素养”这一相对宏观的教育理念,一方面需要厘清学科核心素养的主要内容,包括学科核心素养的基本内涵及其与学生整体发展核心素养之间的关系;另一方面要努力探索将知识转化为能力、将能力内化为素养的途径和策略。尽管当下我们尚未就数学核心素养的基本内涵达成共识,但数学的核心知识、核心能力和核心思想必然是构成数学核心素养的基本元素。同时,这些基本元素之间也必然是相互影响、彼此促进的,即核心能力的形成与提升要以知识的理解和掌握为前提,核心思想的体验与感悟又要以核心知识和核心能力作载体,离开核心知识、核心能力和核心思想,所谓核心素养自然无从谈起。也正因如此,从小学数学的众多知识点中遴选出更具基础性、生成性和发展性的核心知识,并着眼于核心素养的培养和发展进一步探索相应的教学策略,就显得十分重要。
二
通常,人们将小学数学中的基本概念、基本方法、基本关系、基本规律等称为基础知识。理解和掌握这些基础知识,对后续学习以及培养学生的思维能力和问题解决能力有着毋庸置疑的重要作用。但另一方面,由于这些基础知识所涉及的内容领域较多,其自身的结构性也就相对较弱,如果不分主次地将它们视作课程内容的核心和课堂教学的重点,势必会影响学习材料的优化组织、知识结构的整体把握、探究活动的深度推进,进而影响学生对知识本质以及相关基本数学思想的感悟,影响其关键能力和核心素养的形成。事实上,只有真正做到对众多知识点有所取舍,我们才能从低效、重复、令人厌倦的各种训练中抬起头来,将目光更加从容地投向学科核心素养和学生的长远发展,也才能使学生真正体会数学学习的乐趣。
那么,哪些基础知识具有区别于普通基础知识的核心价值?如何从小学数学众多知识点中遴选出并确立一些值得我们深入研究和品味的核心知识呢?我的体会主要有以下几点:
一要在展开过程中考察内涵丰富性。所谓内涵丰富性,是指在知识自身及其形成过程中,除去其显性意义,是否还蕴含着较为丰富的数学思想,是否对学生积累学习经验、掌握学习方法、形成积极的学习态度具有一定的启示,是否有助于学生理解数学、应用数学及其心智成长。例如:通过“运算律”的教学,学生不仅能够了解运算律的基本内容,初步学会应用运算律进行简便计算,而且能够积累探索规律的学习经验,增强开展探索性学习的能力,加深对四则运算过程和本质的理解,感受探索、表征和应用规律过程所蕴含的推理思想、模型思想和化归思想。如果将眼光放得更加长远一些,运算律也是整个代数学赖以建立和发展的基石,因为整个代数学的发展就是系统地应用运算律去解决各种各样的代数问题。所以,运算律作为核心知识是当之无愧的。
二要在拓展过程中考察自主生长性。这里所说的自主生长性主要是指知识本身所具有的再生力和迁移力。这不仅是相关知识得以生发和赖以依附的逻辑纽带,也是探索新的规律、解决新的问题时选择策略的思维起点。考察某个知识是否具有较强的自主生长性,一个重要的考量就是看它可供拓展的广度和深度,以及它在拓展过程中的作用和价值。例如:学生在一年级学习两位数加、减整十数或一位数的口算时,有一条基本的规则——“把几个十与几个十相加减、几个一与几个一相加减”。这条规则反映的是加减运算的一个基本原理,即只有计数单位相同的数才能直接相加减。由此规则出发,容易类推出“用竖式计算整数加、减法要将数位对齐”“用竖式计算小数加、减法要将小数点对齐”“计算分数加、减法要先通分再计算”。可见,“把几个十与几个十相加减、几个一与几个一相加减”尽管简单、浅白,却是值得关注的一个核心知识。
三要在整理过程中考察结构关联性。任何数学知识从来就不是彼此孤立的,而是相互依存、相互关联的。正是这种相互依存和相互关联,使得数学内容总是以一种结构化的形态呈现在我们面前。因此,在实际教学中,经常需要对相关教学内容进行适当的整理和加工,使之更具条理性、更加结构化,以促使相关知识的核心价值自然地显现出来。在一个结构化的内容体系中,总是存在一个或几个处于核心位置的知识,由这些知识出发就能从整体上把握内容结构中诸要素的内在关联,并使相关知识发生、发展的基本脉络更加清晰地呈现出来。例如:单位“1”就是分数知识系统中的一个核心概念。它既可表示抽象的自然数“1”,也可表示具体的单位数量——当它表示抽象的自然数“1”时,得到的分数具有“率”的属性;当它表示具体的单位数量时,得到的分数具有“量”的属性。通过单位“1”的转化能把a÷b归结为分数,即如把3块饼平均分给4个小朋友,每人分得的结果既可用1/4表示(即每人分得“3块饼”的1/4),也可用3/4块表示(即每人分得“1块饼”的3/4),而后一种表示方法即可表明3÷4=3/4。此外,利用单位“1”的概念可将两个整数量的比归结为相应的分数,利用由单位“1”衍生的“分数单位”的累加则能得到相应的假分数。
四要在应用过程中考察基本解释力。数学具有广泛的应用性,而数学应用本身也往往具有一定的综合性。尽管如此,不同数学知识在应用过程中所起的作用也是有主次和轻重之分的,核心知识在此过程中通常居于支配地位,起到关键作用,有着较强的解释力。反之,在应用过程中具有较强解释力的数学知识,通常具有较为突出的核心价值。例如:计量平面图形面积的大小一般有两种方法,一是直接计量法,二是间接计量法。直接计量的操作过程通常比较烦琐,且计量结果往往又是近似值,所以常常不被看重。然而,在计量不规则图形的面积时,直接计量的作用就会显得不可替代,而且只要将覆盖在平面图形上的“小方格”进一步细分,就可使计量结果逐步接近准确的数值。这就表明直接计量在应用过程中具有较强的基本解释力,它的数学意义自然也是值得关注的。
三
如前所述,就小学数学而言,落实核心素养的教育理念和学生发展目标,不仅要厘清学科核心素养的基本内涵,而且需要努力探索将知识转化为能力、将能力内化为素养的有效途径和方法。其基本的途径和方法有两个:一是引领探究,二是加强应用。
探究是一种相对积极的学习方式,也是一种十分重要的学习能力。学生能否具有积极的学习态度、浓厚的学习兴趣、良好的学习习惯、自主的学习意愿,想不想探究、会不会探究十分关键。尽管小学生对未知世界和陌生领域具有与生俱来的好奇心,但真正意义上的探究学习意识和能力仍然需要教师的适当引领,这种引领作用主要体现在以下几个方面:一是充分尊重并合理利用学生对未知世界和陌生领域的好奇心,创设问题情境,提供探究空间。这里的问题情境既可具有现实背景,也可基于数学知识和方法的拓展延伸进行设计。关键是,情境本身要从学生已有的知识经验出发,既有较强的启发性又有适度的挑战性,有助于学生在情境中发现和提出问题、分析和解决问题,也有助于学生形成不同角度的理解和富有个性的观点。二是通过恰当的问题或问题组合,吸引学生积极主动地参与探究活动,逐步进入高质量的思维状态,形成高质量的数学思维。在实际教学时,一方面要深度理解教学内容,了解学生的认知心理和数学现实,知道他们的所思所想以及可能会遇到的困难和困惑;另一方面要认真倾听学生的不同想法,细心捕捉各种关键信息,从而即时生成更具启发性和针对性的新问题,把学生的思维不落痕迹地引向正确的轨道。三是通过引导学生回顾反思帮助他们加深体验、提升认识。回顾与反思是理解数学知识、探索数学规律、解决数学问题等学习活动的重要环节,是帮助学生积累数学活动经验的重要途径,也是《义务教育数学课程标准(2011年版)》在课程目标中提出的明确要求。在探究活动中适当安排回顾反思的教学环节,有助于学生进一步明确探究的思路,把握探究的关键环节,感受探究活动所蕴含的数学基本思想,从而使探究真正内化为他们的一种学习意识和学习素养。
数学应用过程不仅具有一定的综合性,需要不同知识和能力的共同参与,有助于学生更加深入地体会数学知识和方法之间的相互影响和内在关联,而且具有较强的生成性,有助于学生初步养成用数学的眼光观察日常生活现象、从数学的角度发现和提出问题、用数学的方法分析和解决问题的习惯,进而使数学学习更具生命活力,并更好地助力核心素养的形成和发展。在实际教学中,一方面要重视结合相关内容的教学,设计具有较强探索性和综合性的应用问题,吸引学生联系相关数学知识和方法进行开放性思考,并在此过程中获得对数学知识和数学学习过程更为透彻的理解。另一方面要鼓励学生主动应用数学的概念、原理和方法解释日常生活现象,解决现实世界中的简单问题,体会这样的问题不仅大量存在,而且可以抽象成数学问题,并应用数学方法予以解决。此外,还应切实重视解决问题策略的指导,启发学生根据需要解决的实际问题的特点,灵活选择相应的策略,不断增强运用策略解决问题的主动性和自觉性,从而激活创新潜能,丰厚数学素养。