苏教版高中数学教材中对数学建模的处理

2016-06-15 22:57郑志星
中学生数理化·教与学 2016年6期
关键词:苏教版数学课程例题

郑志星

高中时期的数学建模,只是一个基础理论的学习.通过这些基础理论的学习,能够为学生今后的发展奠定基础.所以,高中数学教材对数学建模的处理,就显得非常重要,它关系到学生对数学建模基础知识的掌握程度.下面结合自己的教学实践谈点体会.

一、数学建模在高中数学课程中的意义

数学课程的最大特点,是公式、定理和概念较多,虽然练习题非常多,但基本上都是对现实问题的抽象.因而,很多学生对数学不感兴趣.尽管如此,但数学的学习,对于每个学生来说都非常重要.特别是数学建模这一块的教学内容,是学生运用数学知识解决实际问题的一个良好平台,不仅要求学生能够对以前学过的数学知识灵活运用,还要求学生能够对现实问题进行分析,并采取有效的方式解决.所以,数学建模能够培养学生的逻辑思维能力、分析判断能力等,提高学生运用所学知识解决实际问题的能力.

二、苏教版高中数学教材对数学建模的处理

1.框架结构与习题、例题.在苏教版高中数学教材中,其函数模型部分被安排在函数部分的最后一节中.从这里可以看出,数学模型的建立是比较难的.苏教版主要是通过几个事例,结合人口模型和行星模型,对模型建立过程中的主要问题进行相关的阐述,再做出相关的归纳整理.与此同时,教材也安排了“钢琴与指数曲线”来帮助学生理解数学建模.不过,其例题数量偏少,而且问题的情境设置与学生的日常生活相距深远,不方便学生理解题意.

2.细节方面的处理.苏教版的高中数学教材对技术的使用阐述的比较详细,强化学生对数学建模的操作过程的记忆,这对学生以后对数学建模的深入理解有较大益处.在例题的讲解方面,苏教版着墨较多,特别是对于如何解题部分,讲解得非常详细.

三、关于高中数学教材对数学建模处理的一些思考

1.循序渐进.由于数学建模需要学生具备一定的理论联系实际的能力,但是高中学生的理论联系实际能力整体来看不是很强.所以,教材对数学建模的处理,应采用循序渐进的方式.也就是说,尽量让学生从一些较为简单的建模知识开始学习,随着时间的推移,年级的增加,可增加数学建模内容的篇幅.这反而能使学生愿意学习数学,提高他们的抽象思维能力.教材的设置也应根据不同地区的学生知识状况,安排不同层次的学习顺序.

2.取材于生活.选用学生比较熟悉的材料,作为例题的主要内容,让学生有一种解决实际问题的氛围,提高他们的学习兴趣.对于部分与实际生活联系密切的例题,教材可以通过情境设置、设问等方式,引起学生的注意.在具体的数学建模过程中,教材具体详细地阐述某一个实例.通过这种典型案例演示的方法,使学生掌握基本的数学建模的方法.就数学建模的一般步骤来看,主要分为审题、建模、解模和结论.

3.处理方式多样化.考虑到高中学生的课业负担重,他们很难在较短的时间内,完成整个建模过程,教材中可以将模型的解答或处理分成多个小步骤.这样,既能缓解学生的课业负担,又能使学生的分析能力得到培养.另外,可以将处理过程中的重点事项和非重点事项区别开来,节省学生处理数学模型的时间.现举例分析.教学目标:使学生掌握基本的函数的定义域和值域的求法,并通过对实际问题的分析,锻炼他们的逻辑思维和数学建模的能力.教学方法:通过创设情境,使学生的注意力由课外转向课内.例题:一辆汽车的行驶速度为60km/h,汽车的行驶路程与行驶时间的关系式为:y=60x+20.(1)本题所涉及的变量有哪几种?这几种变量之间呈现什么样的关系(用平面图表示).(2)以上的关系式,初中学习阶段称之为什么?教师引导:(1)用集合的语言阐述上述两个问题的共同特点?它们涉及哪些集合?引出函数的定义,并提醒学生注意相关问题.例题演练:(1)x→y,y2=x,x,y属于整数.要求学生判断该等式是否为函数……教学评价:(1)集中解答学生的各种问题,提升学生的学习兴趣.(2)吸纳学生提出的各种建议,促进数学建模课程的有效开展.

总之,本文对数学建模在高中数学课程中的意义作了相关的阐述,并分析了苏教版高中数学教材对数学建模的处理,主要分为两个方面:第一,框架结构与习题、例题;第二,细节方面的处理.之后,笔者关于高中数学教材对数学建模处理的进行了一些思考,提出了几点改进办法,第一,循序渐进;第二,取材于生活;第三,处理方式多样化.希望通过文章分析,有利于学生对数学建模知识的掌握,有利于促进学生运用知识解决实际问题能力的提升.

猜你喜欢
苏教版数学课程例题
让钟表发展史走进数学课程思政课堂
由一道简单例题所引发的思考
由一道简单例题所引发的思考
浅谈高中数学课程资源的开发
向量中一道例题的推广及应用
几何背景在不等式学习中的作用——以湘教版、苏教版高中数学教科书为例
问渠哪得清如许 为有源头活水来
课本题改编练习(常用逻辑用语、函数)
课本题改编练习(推理与证明、复数)
组合数学课程教学浅探