毛小亮 高丽
摘 要:随着新课改的深入,数学思想方法越来越受到大家的重视,作为数学教育的精髓,对它的教学研究显得尤为重要。本文通过对其重要性的阐述,从具体的一堂数学课着手,分析了如何在数学课堂学习的每个环节,来提高学生对数学思想方法的理解和运用,帮助学生更好的学习数学知识。
关键词:数学思想方法;中学数学;课堂教学
中学数学教育由于时间紧、教学内容庞杂以及中高考带来的升学压力,一直以来,无论是教师还是学生都“机械式”、“高强度”的进行教学活动,把主要的精力放在了知识的灌输和习题的讲解上,导致了大家对数学思想方法的严重忽略。随着新课改的深入,对于数学思想方法的教学逐渐受到广大师生的关注,并取得了一些成果。但教学效果还是很不理想,大部分数学教师只是在教学活动结束的时候,提出所用到的数学思想方法,而没有让学生在学习过程中就接触和领悟,导致学生对数学思想方法印象不深,只是知道了一个数学名词,在以后的数学学习中无法想到或灵活应用,没能达到数学思想方法的教学目的。
那为什么数学思想方法如此重要呢?首先要知道什么是数学思想方法,所谓数学思想方法是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的教学观点,在认识活动中被反复运用,带有普遍的指导意义,是建立数学关系和用数学解决问题的指导思想;并数学地提出问题、解决问题过程中所采用的各种方式、手段、途径等[1]。它是数学的灵魂,日本著名数学教育家米山国藏说:“即使学生把所教的知识(概念、定理、法则和公式等)全忘了,铭记在他心中的数学精神、思想和方法却能使他终身受益。”也就是说,数学的精髓不在于知识本身,而在于数学知识中所蕴含的数学思想方法;数学教学的目的不在于学生掌握了多少数学知识,而在于掌握和运用数学思想方法来解决实际问题的能力[2]。就像一个舞者,由于其身体律动的节奏感在,就算其没有学过某种舞蹈动作,但只要音乐一响起来,他就可以优美的舞动起来。所以,进行数学思想方法的教学是数学教学的关键一环。为了实现数学思想方法的教学目标,教师应该从具体的一堂数学课入手,从课前、课堂上和课后的各个环节,从“多次孕育(渗透)、初步形成(介绍)、应用发展(突出)”三个阶段来设计教学过程,需要教师的倾情引导和学生的充分参与来实现。
一、课前
贯彻数学思想方法的教学,至关重要的一点是:数学教师必须深入钻研教学内容,充分挖掘其中的数学思想方法,在教学目的制定时,不能忽视数学思想方法的教学要求。在保证数学知识,技能训练完成的情况下,在设计教学过程时,要考虑到如何让数学思想方法在知识形成过程中渗透给学生。从新知探索、练习巩固和小结复习等环节都要设计可行的措施。而对于学生,要让其课前预习新知识,可以在上节课结束时留下思考题、探究题,激发学生的自学兴趣,让其在预习新知的过程中,自己对课本内容进行提炼、抽象、概括和升华,也就初步有了数学思想方法的感知,为课堂上的学习做好思想和知识准备。
二、课堂上
数学课堂是开展数学教学活动的主要场所,在一节四十五分钟的数学课上,要实现数学思想方法的教学,首先要按照课前教学设计中设计的那样,从导课、新知探索、练习巩固、小结复习甚至整个教学过程的串接,都要渗透数学思想方法。其次,要让学生亲自参与到知识的形成过程中,充分调动学生学习的主动性,这样,得到的新知识和使用的数学思想方法才能被学生真正领悟。
在导课和新知探索时,引入生活实例或一个数学现象,引导学生进行归纳总结,将其符号化,公理化,这就是符号化思想和公理化思想的体现。比如,在学习等差或等比数列时,给出一些生活中数量等份增减或逐倍变化的实例,为了表示这种具有特殊规律的一列数,就要引入首项、公差、公比以及相应数列的通项公式,将抽象问题具体化;在练习巩固时,先给学生自己思考的空间,教师加以引导,并鼓励学生“奇思妙想”,不要只知道套用解题技巧和“类似题型”,要让学生亲自感受数形互化、问题变换和分类讨论等过程,使学生体会到数形结合思想、变换思想和分类讨论思想。比如平面解析几何、立体几何、函数与方程等重难点题型最能将数学思想方法体现的惟妙惟肖。还有重要的一点,就是在小结复习时,要将使用到的数学思想方法进行归纳总结,并将其一般化,为学生以后的运用做准备。
三、课后
经过前面两个教学过程,学生对所学的知识和与之相应的数学思想方法都有了基本的认识。但由于数学思想方法是对数学知识的进一步提炼和概括,是一种隐性的知识内容,虽然在课堂上已经渗透给学生了,但对学生来说还是抽象和模糊的,不可能一蹴而就。这就需要学生课下结合相应的练习和思考题来运用所学到的数学思想方法,要在解决问题的不断实践中才能理解和掌握。因此,教师应该强调学生在实践过程中,善于用数学思想方法去指导思考的过程,将其作为一种习惯。久而久之,学生就能运用自如了。
“授人鱼,不如授人渔”。数学思想方法的学习和运用,对学生以后的工作、学习和生活都有很大的帮助,就算其以后不从事与数学相关的工作,甚至,把数学知识都遗失殆尽,但数学思想方法却会作为一种思考问题的思维方式一直发挥作用。但要真正让学生理解并掌握数学思想方法,教师一定要从每一节数学课着手,精心设计教学环节,做到有意识、有目的、有计划、有步骤地进行数学思想方法的日常教学,要反复强调,日积月累,最终让学生真正学到数学的精髓——数学思想方法。
参考文献:
[1]钱佩玲,邵光华.数学思想方法[M].北京:北京师范大学出版社,1999,7.
[2]傅敏,张维忠.数学教育研究新论[M].成都:电子科技大学出版社,1995,56.
(作者单位:延安大学数学与计算机科学学院)