基于PCA及机器学习的人脸识别应用研究

2016-05-14 20:37沈萍
计算机教育 2016年6期
关键词:支持向量机主成分分析人脸识别

沈萍

摘要:针对人脸识别问题,提出利用PCA算法提取特征脸,采用LDA和SVM算法进行人脸分类并比较两种算法的分类结果,展示在ORL以及Yale数据库上的实验结果,提出SVM算法在人脸光照变化的数据集上的结果更好,LDA算法在人脸方位变化的数据集上的结果更好且算法复杂度更低、识别效率更高。

关键词:人脸识别;主成分分析;线性判别分析;支持向量机

猜你喜欢
支持向量机主成分分析人脸识别
人脸识别的“国标”来了
中科视拓开放商业版本人脸识别算法
荣耀畅玩7C:人脸识别
动态场景中的视觉目标识别方法分析
论提高装备故障预测准确度的方法途径
主成分分析法在大学英语写作评价中的应用
江苏省客源市场影响因素研究
基于熵技术的公共事业费最优组合预测
SPSS在环境地球化学中的应用
基于支持向量机的金融数据分析研究