田贵龙
【摘要】数形结合是把握数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合。它将“静态”为“动态”,变“无形”为“有形”。它一方面是解题的过程,又是学生形象思维与抽象思维协同运用互相促进,共同发展的过程,对提高学生的观察能力和思维能力是非常有帮助的。
【关键词】初中数学 数形结合 教学策略
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2016)03-0192-02
随着新课改的推进,数学思想方法方面的教学得到教师的重视。数学的思想方法是数学这门科学的精髓,可以让人通过它领会到数学的本质,并且从数学的角度思考和解决问题。而数形结合是一种数学思想,在数学知识和解题方式上,都有进一步深化。初中数学新课程《标准》中,安排了“数与代数”“空间与图形”“统计与概率”“实践与综合”四个学习领域,在每一个学习领域,都离不开两要素——数与形。数形结合贯穿了初中数学的两条主线,即“数”和“形”。倘若教师在初中数学教学中贯穿数形结合的方法,引导学生形成数形结合的思考直觉,则有助于学生培养良好的数学思维和解题思路。
一、有理数中的数学结合思想
数轴的引入是有理数内容体现数形结合思想的力量源泉.对于每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此).相反数、绝对值概念则是通过数轴上的点与原点的位置关系来刻画的.尽管我们学习的是有理数,但要时刻牢记它的形(数轴上的点),通过数形结合的思想方法的运用,帮助初一学生正确理解有理数的性质及其运算法则.相关内容的中考试题,应用数形结合的思想也可顺利得以解决。例如:有理数的加法与减法教学时,安排下列数学活动:
1.把笔尖放在数轴的原点处,先向正方向移动3个单位长度,在向负方向移动2个单位长度,这时笔尖停在表示“1”的位置上。用数轴和算式可以将以上过程及结果表示。
2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式表示以上过程及结果。
这样设计教学让学生从“形”上感受有理数的加法运算法则,采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解。在学生充分自由活动的基础上,用“数形结合”的观点审视在数轴上的连续两次运动,探寻有理数加法的几何解释。由表示两次连续运动结果的点与原点的位置关系,确定两数和的符号;由表示两次连续运动结果的点到原点的距离,确定两数和的绝对值。
二、方程中隐含的数形结合思想
列方程解应用题的难点是如何根据题意寻找等量关系列出方程,要突破这一难点,往往就要根据题意画出相应的示意图,这里隐含着数形结合的思想方法。例如,行程问题教学中,老师应渗透数形结合的思想方法,依据题意画出相应的示意图,才能帮助初一学生迅速找出等量关系列出方程,从而突破难点。
三、不等式中蕴藏着数形结合思想
教材在安排“解一元一次不等式组”的内容时,创设了这样的问题情境“杜鹃花种植问题”,意图是想让学生理解解一元一次不等式与二元一次方程组一样,需同时满足两个约束条件,让学生经历从问题到不等式组的建模过程。为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无数多个解.这里蕴藏着数形结合的思想方法.在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步。确定一元一次不等式组的解集时,利用数轴更为有效。
四、函数及其图像内容凸显了数形结合思想
因为在直角坐标系中,有序实数对(x,y)与点P的一对应,使函数与其图像的数形结合成为必然。一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助。因此.函数及其图像内容突显了数形结合的思想方法.教学时我们应注重数形结合思想方法的渗透,这样会收到事半功倍的效果。例如:在教学二次函数的应用时,设计这样的问题,如图所示,桃河公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m。
1.如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?
2.若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?安排学生活动:(1)分析实际问题中的量,分清常量、变量及变量的变化范围;(2)探索量与量之间的关系,变量的变化规律,确定函数关系;(3)根据函数关系式,求二次函数的最大值或最小值;(4)考查所得到的二次函数的最大值或最小值是否符合实际问题的意义,明晰结论。这样设计能根据实际问题中数量变化关系的图象特征,用相关的二次函数知识解决实际问题。引导学生从探索具体问题中的函数关系的经历中,体验将实际问题数学化的过程,体会二次函数是刻画现实世界数量关系的有效的数学模型,进而获得相应的数学思想、方法和技能,感受数学的价值。
总之,通过数与形有机结合,使学生的思维完成从“形象”到“抽象”的概括,从“抽象”到“形象”的再现。数学思想方法既是数学的基础知识,是知识的精髓,又是将知识转化为能力的桥梁,用好了就是能力。因此我们数学老师在教学中要注重数学思想方法的渗透、概括和总结,要重视数学思想方法在解题中的应用。