对高中数学教学中学生解题能力培养的研究

2016-04-06 00:33陶克亮
文理导航 2016年8期
关键词:数学思维高中数学培养

陶克亮

【摘 要】在高中数学教学改革的开展下,这种专注于灌输理论知识,缺乏对学生数学思维的培养,对灵活运用数学知识解题的方法也过于忽视的传统数学教学模式,已经越来越不适合现在的教学。并且,新课改之后的数学学习更偏向于考察学生的思维能力。新鲜的题目、变换的题型亟需教师通过提高学生数学思维能力的方法去解决。

【关键词】高中数学;数学思维;培养

在高中学习中最重要的课程之一就是数学,它不仅在高考分数上占很大比例,在题目上也愈发新颖多样,如何适应高中数学题型愈加灵活的变化,是教师需要重视的问题。对于这种情况,本文将分别从高中数学教学中培养学生解题能力的重要性和在高中数学教学中培养学生解题能力的方法两方面进行阐述。

一、高中数学教学中培养学生解题能力的重要性

高中数学是一门知识点多并且零散的科目,由于教学主要为了提高分数,因此在实际教学中只讲题目本身而不去引申为讲同一类型题目,十分缺乏对学生的数学思维的培养。学生在解题中往往只会教师教过的题,却对同一类型其他题不知如何求解,因此教师在教学中更应注重学生数学解题能力和数学素养的培养。

二、在高中数学教学中培养学生解题能力的方法

(一)从审题方面入手

审题是否认真是能不能进行正确解题的第一步,也是很关键的一步。审题中要抓住已知条件、未知条件以及所求的答案。审题的关键就在于理解题意,弄清题目的结构,并且挖掘题中的隐含条件。很多学生在解题时出现的错误,主要归结为审题能力培养的不够。正确的审题方式,有助于开阔解题思路,理清解题顺序。从另一方面来说,认真审题的目的就是发掘题目中的隐含条件。例如,已知向量a=(√3,1),b不是平行x轴的单位向量,且a×b=√3,则b等于?分析:b是单位向量,这是一个隐含条件,说明向量b的模为1即√(x^2+y^2)=1。那么接下来就很好求了,a×b=√3×x+1×y=√3和√(x^2+y^2)=1联立,求出的x,y即是b的坐标。只有不断审题才能对做题有正确的思路,因此加强审题能力是培养学生解题能力的基本方法。

(二)从数学概念入手

数学概念是通过观察、感知、探求与概念相关的事物,引入概念模型,探究模型属性,并通过分析、比较、抽象出其本质特征,来定义科学概念,在最后概括、归纳、反馈概念系统来得出的。而运用数学概念解题,则是直接把高中数学课本的知识拿出来运用到解题中去。高中数学的定理、法则和性质都是可以通过高中数学书上的公理演绎出来的。因此,用知识点的直接套用来解题,是数学解题方法里最直接、最简单的方法,同时也是学生最容易忽视的方法。例如,函数的单调性、周期性、奇偶性判断的问题,都可以通过直接套用数学概念的方式来解题。

(三)从函数与方程相结合的解题思路入手

函数的思想核心就是从函数关系里的相关性质、图形出发,进而对这些图形和性质进行分析。简单来说,就是将方程问题转化为函数问题,这样可以根据函数图像、性质的判断为求解提供条件,从而简化问题。例如,已知关于x的分式方程(a+2)/(x+1)=1的解是非负数,则a的取值范围是多少?解析:去分母,a+2=x+1;因为x≠-1。a≠-2,x=a+1≥0;所以a≥-1且a≠-2。因此,根据高中的知识点,函数与方程相结合的解题思路可以归纳为两部分,一是熟练掌握函数的全部性质,包括函数的单调性、图形变化、周期性、最值等等;二是要重视一元二次方程、一元二次函数和一元二次不等式等的问题。

(四)从数形结合的解题思路入手

通过运用图形与数量相结合的方法,能清晰地理解题中的已知条件、未知条件以及所求答案各种对解题有用因素,能对原题中代数的意义有着精确的理解,并且还能对原题中相关数据的几何含义有所了解并能在脑海中形成形象直观的图形,从而能够高效快速的找到最优的解题方法。对于需要解决的数学问题,当找到合适的解题思路之后,是运用图形的简洁直观来解析数字的复杂难懂,还是通过数字的逻辑缜密来表达图形所不能表达的局限性,或者两者在同一题目中结合运用,在保证图形信息和数字信息两者等价转化正确的前提下,要看那种途径更加简单易懂,更加便于解题者理清逻辑关系,从而能更加准确快捷地解题。在一定意义上来说,通过对比运用数形结合所解答出答案的简洁程度,也反映出学生对数形结合思想的理解能力强弱。而在目前的高中数学中,主要是对数量关系和空间关系进行探讨。例如,在数轴中,数轴上的各点与实数一一对应,在平面直角坐标系中,坐标平面上的各点实数一一对应。

(五)从分类讨论的解题思路入手

此类问题要求学生深入研究题目所要表达的对象有什么性质和特征,然后对这些性质和特征进行分类讨论,这对于学生的知识掌握程度要求的十分严格,需求学生广泛的数学知识。学生在高中运用分类讨论的解题思路主要是两种。 1.在函数中的分类讨论

学生在高中阶段遇到的函数问题大多是含参数的,而在含参数的函数问题中,参数值的量变往往会导致结果发生变化,想得出更加完整具体的答案,就必须对参数进行分类讨论。

2.在不等式中的分类讨论

不等式求解在高考数学中占有很大比重,而对不等式求解题的关键是分类讨论的正确应用。例如,解关于x的不等式√(x2-4mx+m2)>m+3。解:原不等式等价于|x-2m|>m+3;当m+3>0即m>-3时,x-2m>m+3或x-2m<-(m+3)随后要进行两种情况的分类讨论才能得出完整的答案。

三、结束语

总而言之,新时期的数学教学,题海战术已经不能解决目前高中数学题型变化多端,各类难题经常出现这种现象。只有提高学生的解题能力,正确引导学生的审题,总结解题的各种方法,才能适应高中课程改革的进度,让学生在不断的解题过程中,享受数学所带来的乐趣,提高数学思维。

【参考文献】

[1]蒋法宝.关于如何培养高中生数学解题能力的几点心得体会[J].华章,2013(23):238-238

[2]杨伟.浅析高中数学教学中培养学生解题能力的方法[J].中文信息,2014(7):223

[3]刘吉强.浅谈高中数学教学中学生解题能力的培养[J].高中数理化,2014(24):25-25

猜你喜欢
数学思维高中数学培养
高等数学的教学反思
高中数学数列教学中的策略选取研究
调查分析高中数学课程算法教学现状及策略
基于新课程改革的高中数学课程有效提问研究