抗VEGF/VEGFR靶向药物的治疗进展

2016-03-13 11:33罗和生
胃肠病学和肝病学杂志 2016年3期
关键词:沙利度胺酪氨酸转移性

张 欣, 罗和生

武汉大学人民医院消化内科,湖北 武汉 430060

抗VEGF/VEGFR靶向药物的治疗进展

张 欣, 罗和生

武汉大学人民医院消化内科,湖北 武汉 430060

肿瘤微环境在肿瘤的起源、生长和转移中发挥重要作用,而新生血管是肿瘤生长和转移所必需的,血管的生成需要大量调节血管生成的细胞因子参加,而血管内皮生长因子(vascular endothelial growth factor,VEGF)是最重要的促血管生成因子。阻断VEGF通路中某一环节,均有可能有效地抑制肿瘤血管生成,使肿瘤血管退化脱落,产生抗肿瘤作用。根据VEGF的调控特点,已出现多种以VEGF/VEGFR为靶点的抗肿瘤血管生成药物。本文就抗VEGF的靶向药物治疗及特点作一概述。

VEGF/VEGFR;抗肿瘤药物;治疗进展

肿瘤微环境在肿瘤的起源、生长和转移中发挥着重要作用[1],1971年,Folkman[2]发现血管生成在肿瘤生长过程中发挥重要的作用,新生血管是肿瘤生长和转移的必要条件[3]。此后,血管生成的研究格外受到人们的关注,而血管内皮生长因子(vascular endothelial growth factor,VEGF)在血管生成过程中尤为重要。

VEGF具有高度特异性,其家族成员有VEGF-A、VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(placental growth factor,PIGF)。VEGF-A能与VEGFR-1和VEGFR-2结合,可促进血管生成,增加血管通透性,这与Roskoski[4]研究一致,同时还发现VEGF-A可促进内皮细胞增殖迁徙。VEGF-B只能和VEGFR-1结合,且它的功能还未研究清楚,但有研究指出VEGF-B可能不直接促进血管生成,而是血管生成的存活因子[5-6]。VEGF-C和VEGF-D主要与VEGFR-2和VEGFR-3结合,它们主要促进血管生成和淋巴管生成。PIGF和VEGF-B一样,只与VEGFR-1结合,它的功能尚不明确,但是越来越多的证据指出,PIGF可以促进病理性血管生成[7]。有研究[8-12]表明VEGF通过旁分泌方式与血管内皮细胞上的受体结合,促进肿瘤细胞的生长、侵袭和转移,同时VEGF通过自分泌功能和肿瘤细胞表面的受体结合,促进肿瘤细胞的侵袭和转移。在肿瘤发生过程中,存在VEGF表达过量,这些过量表达的VEGF可诱导产生大量新生血管,而这些血管又为肿瘤转移提供能量[13-14]。VEGFR是VEGF的受体,在正常生理情况下,当VEGF与VEGF-R结合后,活化酪氨酸蛋白激酶信号系统,参与调控细胞增殖与分化,VEGFR分为VEGFR-1、VEGFR-2和VEGFR-3,这3种VEGFR具有酪氨酸激酶活性[15-16],VEGFR-1的功能尚不明确,目前知道VEGFR-1具有血管性和非血管性的功能,它不仅能在肿瘤细胞上表达,同时也能在单核细胞和巨噬细胞上表达[9,15,17-18],而VEGFR-2主要与VEGF-A结合促进血管增生和增加血管通透性,VEGFR-2不仅在肿瘤细胞上表达,且具有自分泌功能[15,19];VEGFR-3主要在淋巴细胞上表达,介导淋巴管的生成[15,17]。

因此,根据VEGF及VEGFR的调控特点,先后出现了多种靶向药物,这些药物可阻断VEGF信号转导通路中某一环节,单独或联合化疗产生抗肿瘤作用,抑制肿瘤生长及转移。

1 Bevacizumab(Avastin)

Bevacizumab,商品名Avastin,是第一个抗肿瘤血管生成药物,于2004年在美国批准上市,已被批准用于多种实体瘤,如转移性肾癌、转移性结直肠癌、非小细胞肺癌等,目前与化疗药物联用作为转移性结直肠癌的一线治疗方案。它是一种重组人VEGF的单克隆抗体,通过与VEGF-A结合,干扰VEGF-A与VEGFR-1、VEGFR-2结合,抑制肿瘤血管生成,从而抑制肿瘤生长[20]。有Meta分析研究[20]指出,在晚期结肠癌中,Bevacizumab联合化疗如FOLFIRI或FOLFOX方案后较单用FOLFIRI或FOLFOX方案能显著提高OS(HR=0.848,95%CI:0.747~0.963),延长PFS(HR=0.617,95%CI:0.530~0.719),改善ORR(OR=1.627,95%CI:1.199~2.207;P<0.05)。贝伐珠单抗在晚期大肠癌的二线治疗中也获得了良好的效果,ECOG3200试验[21]显示贝伐珠单抗联合化疗与单用化疗相比,ORR分别为21.8%和9.2%,PFS分别为7.2个月和4.8个月,OS分别为12.9个月和10.8个月。

2 VEGF-Trap(Aflibercept)

VEGF-Trap,即Aflibercept,商品名Zaltrap,于2012年8月批准上市,Aflibercept可与VEGF-A、VEGF-B、PLGF-1及PLGF-2结合,抑制血管内皮信号途径的信号转导,同时下调肿瘤血管基因表达,降低肿瘤血管密度,抑制肿瘤的生长和转移[22-25],在转移性结直肠癌、转移性非小细胞肺癌、转移性胰腺癌的Ⅱ期、Ⅲ期临床试验中,VEGF-Trap单独或联合化疗使用均取得较满意的疗效[26],VEGF-Trap联合FOLFIRI方案治疗转移性结直肠癌的Ⅲ期临床试验中发现,加用VEGF-Trap能较单用FOLFIRI能显著延长患者无进展生存期(progression-free survival,PFS)(6.90vs4.67 个月)和OS(13.3vs12.06个月),因而被美国FDA批准可用于联合FOLFIRI治疗预先接受过含奥沙利铂方案化疗的转移性结肠癌患者[27]。在一项VITAL研究中发现,Aflibercept联合多西他赛的二线治疗方案治疗非小细胞肺癌,虽然OS无明显改变,但是PFS(HR=0.82)和RR(response rate,23.3%vs8.9%)较未联合使用Aflibercept明显改善[28]。

3 抗VEGFR抗体

有研究发现,VEGFR数量有限,且易被饱和,对于VEGF而言,抑制VEGFR能够更有效地抑制VEGF信号转导途径[29]。Ramucirumab(IMC-1121C)是完全人源化的VEGFR2抗体,它在许多肿瘤模型中具有抗肿瘤活性,2014年被美国FDA批准上市,可用于治疗晚期胃癌或食管胃交界腺癌,目前Ramucirumab联合化疗治疗乳腺癌、非小细胞肺癌及二线治疗转移性结肠癌仍处于Ⅲ期临床试验中;IMC-18F1是重组人VEGFR1单克隆抗体,它可以阻断VEGF-A、VEGF-B、PIGF与VEGFR-1结合,在体外模型实验中能阻断其生物学活性,同时表现出抗血管增生、抗增殖活性,除此之外,它还能增强细胞毒化疗药的抗肿瘤活性[30]。目前该药仍处于Ⅰ期临床试验,但已取得较为满意的结果[31-32]。

4 酪氨酸激酶抑制剂

在VEGF信号转导通路中,当VEGF与VEGF-R结合后,活化酪氨酸蛋白激酶信号系统,参与调控细胞增殖与分化,因此,阻断酪氨酸蛋白激酶途径即可有效抑制血管生成,因此酪氨酸激酶抑制剂(TKI)应运而生,此类药物有sunitinib(Sutent;辉瑞)、sorafenib(Nexavar;拜耳)和pazopanib(Votrient;GlaxoSmithKline),被美国FDA批准用于治疗肾癌、胃肠基质细胞癌、胰腺癌、肝细胞癌[27]。

5 Regorafenib(BAY 73-4506)

Regorafenib是PDGF受体、c-kit、FGF受体及3种VEGFR的抑制剂,在恶性胶质瘤的模型中,它可抑制肿瘤生长和微血管的密度,同样在乳腺癌和肾癌模型中,它也表现出抗肿瘤的特性[33]。目前,Regorafenib被FDA批准用于三线或四线治疗转移性结肠癌。

6 VEGF C/D为靶点的抗肿瘤药物

由于VEGF-C、VEGF-D负责调控淋巴管的生成,因而出现针对鼠抗人VEGF-D单克隆抗体,抑制肿瘤淋巴管的生成,目前该种单克隆抗体仍处于实验阶段,在多种小鼠荷瘤实验中证实有效,但仍需进一步论证。

7 沙利度胺

沙利度胺(Thalidomide,Thd)又名反应停,曾作为镇静剂治疗妊娠呕吐,但由于其导致胎儿畸形而退出市场,但在研究其致畸原因时发现,沙利度胺可抑制妊娠初期胎儿某些器官的血管生成,造成畸形,有学者在沙利度胺干扰斑马鱼胚胎的发育过程中发现,沙利度胺可下调VEGF受体neuropilin-1和FLK-1,从而抑制血管生成[34]。因此,现有多种恶性肿瘤化疗方案联合沙利度胺治疗,取得良好的疗效。在卡培他滨联合沙利度胺治疗进展期HCC(肝癌)的临床试验中,可提高患者中位总生存期和中位无进展生存期[35]。在Ⅱ、Ⅲ期的非小细胞肺癌不能手术的患者中,采用吉西他滨+卡铂(GC)方案联合沙利度胺治疗,治疗前后均检测血清血管生成素、VEGF,发现治疗后检测指标最高下降达70%[36]。

8 miRNA-21

miRNA是进化上保守的一类非编码小分子RNA,能够通过与靶基因3’-UTR结合来参与mRNA的降解或阻碍mRNA的翻译,进而导致相关基因表达水平的下降[38]。Di Bernardini等[38]研究发现通过构建荧光素酶报告基因,使得miRNA-21的模拟物可与VEGFA、VEGFB的3’UTG结合,然后抑制VEGFA、VEGFB的表达,进而抑制血管生成。因此,miRNA也成为抗肿瘤血管生成的新研究热点。

肿瘤血管生成是一个极其复杂的过程,这个过程中需要有大量的细胞因子参与,干扰或阻断其中的某一环节都有可能有效地抑制肿瘤血管生成。而VEGF可促进血管生成,在恶性肿瘤的转移过程中有重要作用,因此,将有更多的抗血管生成的靶向药物被研发出来,它们与传统化疗联合,有望对进展期、复发难治及转移的恶性肿瘤提供新的治疗途径。

[1]Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize [J]. J Cell Biochem, 2007, 101(4): 937-949.

[2]Folkman J. Tumor angiogenesis: therapeutic implications [J]. N Engl J Med, 1971, 285(21): 1182-1186.

[3]Folkman J. What is the evidence that tumors are angiogenesis dependent? [J]. J Natl Cancer Inst, 1990, 82(1): 4-6.

[4]Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression [J]. Crit Rev Oncol Hematol, 2007, 62(3): 179-213.

[5]Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells [J]. Proc Natl Acad Sci U S A, 1998, 95(20): 11709-11714.

[6]Li X, Lee C, Tang Z, et al. VEGF-B: a survival, or an angiogenic factor? [J]. Cell Adh Migr, 2009, 3(4): 322-327.

[7]Ribatti D. The discovery of the placental growth factor and its role in angiogenesis: a historical review [J]. Angiogenesis, 2008, 11(3): 215-221.

[8]Lu Y, Zhang A, Wang S, et al. Role of vascular endothelial growth factor overexpression in ovarian tumor invasion and mechanism [J]. Zhonghua Fu Chan Ke Za Zhi, 2002, 37(5): 294-297.

[9]Suzuki K, Hayashi N, Miyamoto Y, et al. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma [J]. Cancer Res, 1996, 56(13): 3004-3009.

[10]Gadducci A, Viacava P, Cosio S, et al. Vascular endothelial growth factor (VEGF) expression in primary tumors and peritoneal metastases from patients with advanced ovarian carcinoma [J]. Anticancer Res, 2003, 23(3C): 3001-3008.

[11]Ha JL, Zhang ZB. Study on relationship between expression of VEGF and microvascular density in human epithelial ovarian cancer tissue [J]. Journal of Xianning University (Medical Sciences), 2011, 25(4): 296-298.

哈建利,张泽波.卵巢癌组织中VEGF的表达及其与MVD的关系[J].咸宁学院学报(医学版),2011,25(4): 296-298.

[12]Lee JS, Kim HS, Jung JJ, et al. Expression of vascular endothelial growth factor in adenocarcinomas of the uterine cervix and its relation to angiogenesis and p53 and c-erbB-2 protein expression [J]. Gynecol Oncol, 2002, 85(3): 469-475.

[13]Deng LC, Shen WS, Zhang Y, et al. The effect of chemotherapy on serum VEGF levels in patients with advanced colorectal cancer [J]. Journal of Clinical Medicine in Practice, 2010, 14(5): 90-91, 93.

邓立春, 沈伟生, 张瑶, 等. 化疗对晚期结直肠癌患者血清VEGF水平的影响[J]. 实用临床医药杂志, 2010, 14(5): 90-91, 93.

[14]Liu JS, Zhu MC. Research progress of RNAi inhibited VEGF expression in tumor therapy [J]. Int J Lab Med, 2011, 32(1): 60-62.

刘津杉, 朱明才. RNAi抑制VEGF表达在肿瘤治疗中的研究进展[J]. 国际检验医学杂志, 2011, 32(1): 60-62.

[15]Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands [J]. Sci Signal, 2009, 2(59): re1.

[16]Korpanty G, Sullivan LA, Smyth E, et al. Molecular and clinical aspects of targeting the VEGF pathway in tumors [J]. J Oncol, 2010, 2010: 652320.

[17]Takahashi S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy [J]. Biol Pharm Bull, 2011, 34(12): 1785-1788.

[18]Fischer C, Mazzone M, Jonckx B, et al. FLT1 and its ligands VEGFB and PIGF: drug targets for anti-angiogenic therapy? [J]. Nat Rev Cancer, 2008, 8(12): 942-956.

[19]Hamerlik P, Lathia JD, Rasmussen R, et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth [J]. J Exp Med, 2012, 209(3): 507-520.

[20]Qu CY, Zheng Y, Zhou M, et al. Value of bevacizumab in treatment of colorectal cancer: A meta-analysis [J]. World J Gastroenterol, 2015, 21(16): 5072-5080.

[21]Reddy GK. The addition of bevacizumab to FOLFOX4 prolongs survival in relapsed colorectal cancer: interim data from the ECOG 3200 trial [J]. Clin Colorectal Cancer, 2005, 4(5): 300-301.

[22]Huang J, Frischer JS, Serur A, et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade [J]. Proc Natl Acad Sci U S A, 2003, 100(13): 7785-7790.

[23]Byrne AT, Ross L, Holash J, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model [J]. Clin Cancer Res, 2003, 9(15): 5721-5728.

[24]Verheul HM, Hammers H, van Erp K, et al. Vascular endothelial growth factor trap blocks tumor growth, metastasis formation, and vascular leakage in an orthotopic murine renal cell cancer model [J]. Clin Cancer Res, 2007, 13(14): 4201-4208.

[25]Lassoued W, Murphy D, Tsai J, et al. Effect of VEGF and VEGF Trap on vascular endothelial cell signaling in tumors [J]. Cancer Biol Ther, 2010, 10(12): 1326-1333.

[26]Gaya A, Tse V. A preclinical and clinical review of aflibercept for the management of cancer [J]. Cancer Treat Rev, 2012, 38(5): 484-493.

[27]Ciombor KK, Berlin J, Chan E. Aflibercept [J]. Clin Cancer Res, 2013, 19(8): 1920-1925.

[28]Ramlau R, Gorbunova V, Ciuleanu TE, et al. Aflibercept and Docetaxel versus Docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial [J].J Clin Oncol, 2012, 30(29): 3640-3647.

[29]Zhu Z, Witte L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor [J]. Invest New Drugs, 1999, 17(3): 195-212.

[30]Wu Y, Zhong Z, Huber J, et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer [J]. Clin Cancer Res, 2006, 12(21): 6573-6584.

[31]Spratlin JL, Cohen RB, Eadens M, et al. Phase Ⅰ pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2 [J]. J Clin Oncol, 2010, 28(5): 780-787.

[32]Chen C, Yu DC, Teng LS. Development of anti-tumor drugs targeting VEGF/VEGFR: a progress [J]. Chin J Cancer Biother, 2007, 14(3): 291-295, 300.

陈川, 俞德超, 滕理送. 以VEGF/VEGFR为靶点的抗肿瘤药物的研究进展[J]. 中国肿瘤生物治疗杂志, 2007, 14(3): 291-295, 300.

[33]Wilhelm SM, Dumas J, Adnane L, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity [J]. Int J Cancer, 2011, 129(1): 245-255.

[34]Yabu T, Tomimoto H, Taguchi Y, et al. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate [J]. Blood, 2005, 106(1): 125-134.

[35]Ang SF, Tan SH, Toh HC, et al. Activity of thalidomide and capecitabine in patients with advanced hepatocellar carcinoma [J]. Am J Clin Oncol, 2012, 35(3): 222-227.

[36]Dudek AZ, Lesniewski-Kmak K, Larson T, et al. Phase Ⅱ trial of neoadjuvant therapy with carboplatin, gemcitabine plus thalidomide for stages ⅡB and Ⅲ non-small cell lung cancer [J]. J Thorac Oncol, 2009, 4(8): 969-975.

[37]He DL, Xie XM, Liu Y, et al. Preliminary study of microRNA expression in colon cancer drug-resistant cell line LoVo/5-Fu [J]. China Journal of Modern Medicine, 2013, 23(18): 31-35.

何冬雷, 谢小明, 刘玉, 等. 结肠癌耐药细胞株LoVo/5-Fu中microRNA表达的初步研究[J]. 中国现代医学杂志, 2013, 23(18): 31-35.

[38]Di Bernardini E, Campagnolo P, Margariti A, et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways [J]. J Biol Chem, 2014, 289(6): 3383-3393.

(责任编辑:马 军)

The therapy progress of target drugs of anti-VEGF/VEGFR

ZHANG Xin, LUO Hesheng

Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Tumor microenvironment plays an important role in tumor, including the origin, growth and metastasis. And angiogenesis is essential for tumor growth and metastasis, lots of cytokines take part in angiogenesis, and vascular endothelial growth factor (VEGF) is the most important one of them. Blocking the VEGF pathway can inhibit tumor angiogenesis, and improve the degradation of tumor vessel, also produce broad-spectrum anti-tumor effect. According to the characteristics of VEGF regulation, the tumor angiogenesis drugs with VEGF/VEGFR as the target have appeared. The characteristics of target drugs of anti VEGF were summarized in this paper.

VEGF/VEGFR; Anti-tumor drugs; Therapy progress

10.3969/j.issn.1006-5709.2016.03.034

张欣,博士,研究方向:消化道恶性肿瘤。E-mail:katherine1216@163.com

罗和生,博士生导师,教授,研究方向:胃肠动力学、消化道恶性肿瘤。E-mail:xhnk@163.com

R735

A

1006-5709(2016)03-0355-04

2015-05-28

猜你喜欢
沙利度胺酪氨酸转移性
SPECT/CT显像用于诊断转移性骨肿瘤的临床价值
白芍多糖抑制酪氨酸酶活性成分的筛选
枸骨叶提取物对酪氨酸酶的抑制与抗氧化作用
蔷薇花总黄酮对酪氨酸酶的抑制作用及其动力学行为
沙利度胺治疗炎症性肠病的有效性及安全性分析
中医火针联合沙利度胺治疗结节性痒疹78例临床观察
PVC用酪氨酸镧的合成、复配及热稳定性能研究
耐奥沙利铂人胃癌SGC-7901细胞具有高侵袭转移性及上皮间质转化特征
沙利度胺治疗肺纤维化新进展
非远处转移性高危分化型甲状腺癌的低剂量碘-131治疗