神经调控通路在肠易激综合征内脏高敏感发病机制中作用的研究进展*

2016-03-13 08:47侯晓华
胃肠病学 2016年6期
关键词:肠易激综合征

白 涛 宋 军 侯晓华

华中科技大学同济医学院附属协和医院消化科(430022)



·综述·

神经调控通路在肠易激综合征内脏高敏感发病机制中作用的研究进展*

白涛宋军侯晓华#

华中科技大学同济医学院附属协和医院消化科(430022)

摘要肠易激综合征(IBS)是临床最常见的功能性胃肠病之一,影响患者生活质量,给患者日常生活、心理健康带来沉重负担。诸多研究显示内脏高敏感(VHS)是IBS发病的重要病理生理机制之一,神经调控在VHS发生中起关键作用。本文就神经调控通路在IBS VHS发病机制中作用的研究进展作一综述。

关键词肠易激综合征;内脏高敏感性;功能性胃肠病;中枢神经系统;周围神经系统

Central Nervous System;Peripheral Nervous System

肠易激综合征(irritable bowel syndrome, IBS)是临床最常见的功能性胃肠病(functional gastrointestinal disorders, FGIDs)之一,全球发病率为9%~23%,严重影响患者生活质量,给患者日常生活、心理健康带来沉重负担,但其发病机制仍未完全明确[1]。诸多研究显示内脏高敏感(visceral hypersensitivity, VHS)是IBS发病的重要病理生理机制之一,神经调控在VHS发生中起关键作用。本文就神经调控通路在IBS VHS发病机制中作用的研究进展作一综述。

一、VHS与IBS

VHS指内脏感觉阈值降低,主要表现为对刺激的感受性增强,即对低于生理性刺激强度的刺激即感不适,对生理性刺激感到疼痛或不适,对伤害性刺激的感觉阈值降低。研究[2]指出,30%~50%的FGIDs患者存在VHS,而无胃肠道运动异常,VHS与IBS患者症状密切相关。IBS患者初始感觉阈值、初始排便感觉阈值、排便窘迫阈值或不舒适感阈值、最大忍受阈值或疼痛阈值明显低于健康志愿者[3-4]。给予结直肠扩张刺激后,通过功能性磁共振成像(fMRI)观察,发现IBS VHS患者的中枢痛觉相关脑区功能更为活跃[5-6]。此外,通过基因敲除/自发VHS模型、应激模型、炎症后模型等IBS动物模型亦证实了IBS病理过程中存在VHS,并为VHS的机制研究提供了支持[7]。

二、VHS发生的机制

1. VHS发生的神经解剖学基础:内脏痛觉转导通路包含三级神经元。Ⅰ级神经元胞体位于背根神经节,感受外周感受器刺激信号后,将信号传递至脊髓背角神经元(Ⅱ级神经元),经脊髓丘脑束、脊髓网状束上传至丘脑和网状结构的Ⅲ级神经元,再投射至躯体感觉皮质、扣带回前皮质等结构,产生内脏痛觉。此外,丘脑通过下行抑制系统作用于脊髓背角神经元易化或抑制内脏感觉信号的处理。因此,外周刺激、中枢转导通路、中枢信号处理及其相互作用等多水平共同调节内脏敏感性。

2. VHS发生的中枢机制:应用fMRI和正电子发射型计算机断层显像(PET)研究[8]发现,给予直肠扩张刺激后,IBS母婴分离模型大鼠前扣带回、前部额叶、岛叶、海马、丘脑、杏仁核、下丘脑等区域功能活动增强,抗伤害性感受的导水管周围灰质活动性降低。上述与痛觉相关的中枢核团功能活动改变提示中枢神经系统的活化参与IBS VHS的形成。

中枢敏感性增强是VHS发生的重要原因之一。外周刺激可使中枢神经元兴奋性持续增强,包括脊髓神经元和脊髓水平以上的神经元动作电位诱发阈值降低、神经元反应性增强、脊髓神经元感受野扩大,引起传入中枢神经系统的信号增加,继而改变生物活性物质的释放。Chen等[9]通过动物实验研究发现,结直肠扩张刺激可使IBS模型大鼠海马CA1区长时程增强效应增加,通过电生理和在鞘内注射抑制剂证明,N-甲基-D-天冬氨酸受体2B亚基(NR2B)参与CA1区长时程增强效应,与IBS VHS形成有关。Jia等[10]对IBS模型大鼠研究发现,下丘脑室旁核中的多肽nesfatin-1可能与IBS发生VHS相关,nesfatin-1可能通过作用于促肾上腺皮质激素释放因子(CRF)/CRF受体1通路,并增加CRF神经元胞质钙离子浓度,从而介导VHS发生。Tran等[11]的研究发现,组蛋白去乙酰化抑制剂可减轻IBS模型大鼠VHS,进一步研究显示,大鼠体内参与疼痛处理的杏仁核存在CRF和糖皮质激素受体(glucocorticoid receptor, GR)基因甲基化改变,提示表观遗传学机制在慢性应激IBS模型大鼠VHS发病机制中发挥重要作用。上述研究显示中枢调控在VHS的发生中起重要作用,但相关机制仍需进一步研究。

3. VHS发生的脊髓机制:脊髓背角是外周刺激沿脑-肠轴传入高级中枢的中继站。内脏感觉信号经内脏感觉传入神经传递至位于脊髓背根神经节的神经元胞体后交叉至对侧,上行传输至大脑皮层产生内脏感觉。内脏感觉主要通过脊髓背角传递至中枢,VHS发生时,外周刺激脊髓背角神经元释放多种神经递质和神经调质,激活配体门控离子通道,使脊髓背角神经元持续活化,从而使脊髓致敏。

Luo等[12]的研究发现,NR2B受酪氨酸激酶调节,其活化可增加结肠对机械扩张刺激的敏感性,提示脊髓水平N-甲基-D-天冬氨酸(NMDA)受体的调控可能是VHS发生的重要机制。脊髓水平去甲肾上腺素(NE)在IBS VHS发生中亦起着重要作用。Zhang等[13]对应激制备的IBS模型大鼠研究发现,应激时大鼠血浆NE水平增加,后者可活化背根神经节中的β2肾上腺素受体,参与VHS的发生。β2肾上腺素受体拮抗剂可降低VHS,并呈剂量依赖性,而β1和β3肾上腺素受体拮抗剂无此作用。电生理实验证实,选择性β2肾上腺素受体拮抗剂可降低结肠特异性背根神经节的兴奋性。此外,脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)、神经生长因子(nerve growth factor, NGF)、TLR4/MyD88/NF-κB信号通路的激活等亦是参与VHS发生的重要机制[14-16]。

脊髓水平离子通道蛋白表达和功能的改变亦是IBS中VHS发生的重要机制。研究[15,17]显示,IBS模型大鼠背根神经节中Nav1.8通道和酸敏感离子通道表达受到调控,从而介导VHS发生。Zhou等[18]的研究显示,在动物模型中,VHS的发生与辣椒素受体1(transient receptor potential vanilloid 1,TRPV1)通路相关,上调miRNA-199表达可抑制TRPV1通路,降低内脏敏感性。

4. VHS的外周机制:外周刺激经末梢终止于肌肉、黏膜、浆膜的初级传入神经元传入后,进一步在脊髓背角交换神经元上传至中枢。肠神经系统(enteric nervous system, ENS)具有结构和功能的可塑性,是VHS形成的基础。外周和中枢的致敏因素可引起胃肠道生物活性物质释放,继而改变受体表达和信号通路活化,调节ENS的神经可塑性,从而导致VHS发生。

研究显示,在VHS发生过程中,肠道信号分子分泌改变。内源性信号分子如交感神经末梢和肠嗜铬细胞分泌的NE、5-羟色胺(5-HT)、组胺、三磷酸腺苷(ATP)、NGF等,可直接刺激内脏传入末梢,与受体结合后诱导传入神经元离子通道开放,在外周致敏中发挥重要作用[19-20]。如5-HT作为重要的神经递质和调质,其合成、释放以及再摄取与VHS密切相关[21-24];鸟苷酸环化酶C(GC-C)激动剂在动物模型中对VHS有治疗效果[25]。

Buckley等[26]对IBS模型大鼠的研究发现,干预白细胞介素-6和CRF1受体表达可降低结肠VHS,并伴随VHS相关Cav3.2通道和胞内信号分子STAT3、SOCS3以及ERK1/2表达发生改变。此外,胰高血糖素样肽1[27]、大麻素受体2[28]、血清素转运体[29]等受体功能的调控亦参与了VHS形成,在外周致敏中起重要作用。

肠系膜传入神经调控在VHS发生中亦起关键作用。研究[30-31]显示,在旋毛虫制备的感染后IBS(PI-IBS)模型中,豚鼠肠系膜神经自发性电活动增加,对压力和酸的刺激反应明显增强,与VHS相关,提示肠系膜神经高敏感在VHS的发生中发挥重要作用。

三、改变VHS神经调控通路的诱因

在IBS VHS发生过程中,多种因素参与诱导神经调控通路的改变,其中包括精神心理因素、肠道炎症与免疫状态改变、肠道微生态改变、食物不耐受等。

1. 精神心理因素:精神心理应激,如早期生活事件可导致持续的应激反应,促进IBS VHS发生,其机制可能包括引起NGF介导脊髓神经可塑性发生改变、肠道5-HT通路改变以及中枢痛觉环路激活[32]。精神心理因素的影响在临床和基础研究中均被证实参与IBS VHS的发生,母婴分离、应激等多种应激模型可成功模拟IBS VHS的症状[33]。

2. 肠道炎症与免疫状态改变:目前认为肠道局部免疫紊乱是诱发VHS的重要因素之一。感染、肠道免疫性疾病等患者均可出现VHS症状。旋毛虫感染、应激因素刺激以及化学物质诱导损伤等动物造模方法被广泛应用于IBS VHS的研究。感染或炎症导致肠神经受损,在存留的肌间神经丛和黏膜下神经丛中,内在感觉神经元兴奋性增加,突触传递发生改变,这些改变在感染后可持续存在[33]。此外,Hughes等[34]的研究发现,IBS患者结肠固有层单核巨噬细胞数量减少,引起β-内啡肽分泌量降低,导致结肠传入神经末梢传入增加,参与形成VHS。Carroll等[35]的研究显示,肥大细胞的数量和种类在VHS模型大鼠与正常对照大鼠间存在明显差异,肥大细胞稳定剂可降低IBS模型大鼠的VHS,提示肥大细胞参与VHS形成。Song等[30]的研究发现,PI-IBS 大鼠肠道肥大细胞数量增加,肠道传入神经放电频率增加,肥大细胞稳定剂可抑制感染后肠传入神经放电频率的改变,提示肥大细胞参与IBS感觉功能的调节。

3. 肠道微生态改变:近年研究发现肠道微生态与肠道疾病密切相关。Crouzet等[36]的研究发现,无菌大鼠移植IBS患者粪便菌群后,可出现VHS症状,提示肠道微生物参与IBS内脏敏感性的调节。Wang等[37]的研究表明,益生菌治疗可降低PI-IBS模型小鼠的内脏敏感性。此外,有临床研究证实,作用于局部肠道的抗菌药物利福昔明可缓解IBS相关症状[38]。推测肠道微生物可能以多种机制协同调节VHS,包括改善肠黏膜炎症反应、维持肠道上皮通透性等。

4. 食物不耐受:饮食可能是诱发VHS的重要因素。部分IBS患者存在食物不耐受,主要包括牛奶、小麦、蛋类等。食物不耐受可能通过肠道IgE或IgG免疫反应参与VHS发生[39],具体机制有待进一步研究。

四、结语

综上所述, VHS是IBS发病的重要机制之一,由外周刺激、中枢转导通路、中枢信号处理及其相互作用而产生,与应激、肠道免疫、肠道微生态、食物等因素有关。对VHS发生机制中神经调控通路的研究将进一步明确IBS的发病机制,从而为治疗提供有效靶点。

参考文献

1 Saha L. Irritable bowel syndrome: pathogenesis, diagnosis, treatment, and evidence-based medicine[J]. World J Gastroenterol, 2014, 20 (22): 6759-6773.

2 陈艳,刘诗. 功能性胃肠病的最新研究新进展[J]. 临床消化病杂志, 2012, 24 (6): 367-370.

3 Törnblom H, Van Oudenhove L, Tack J, et al. Interaction between preprandial and postprandial rectal sensory and motor abnormalities in IBS[J]. Gut, 2014, 63 (9): 1441-1449.

4 Liu L, Liu BN, Chen S, et al. Visceral and somatic hypersensitivity, autonomic cardiovascular dysfunction and low-grade inflammation in a subset of irritable bowel syndrome patients[J]. J Zhejiang Univ Sci B, 2014, 15 (10): 907-914.

5 Larsson MB, Tillisch K, Craig AD, et al. Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome[J]. Gastroenterology, 2012, 142 (3): 463-472.

6 Lowén MB, Mayer E, Tillisch K, et al. Deficient habituation to repeated rectal distensions in irritable bowel syndrome patients with visceral hypersensitivity[J]. Neurogastroenterol Motil, 2015, 27 (5): 646-655.

7 Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308 (11): G885-G903.

8 Wouters MM, Van Wanrooy S, Casteels C, et al. Altered brain activation to colorectal distention in visceral hypersensitive maternal-separated rats[J]. Neurogastroenterol Motil, 2012, 24 (7): 678-685, e297.

9 Chen Y, Chen AQ, Luo XQ, et al. Hippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain[J]. Brain Res, 2014, 1570: 43-53.

10Jia FY, Li XL, Li TN, et al. Role of nesfatin-1 in a rat model of visceral hypersensitivity[J]. World J Gastroenterol, 2013, 19 (22): 3487-3493.

11Tran L, Chaloner A, Sawalha AH, et al. Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress[J]. Psychoneuroendocrinology, 2013, 38 (6): 898-906.

12Luo XQ, Cai QY, Chen Y, et al. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord contributes to chronic visceral pain in rats[J]. Brain Res, 2014, 1542: 167-175.

13Zhang C, Rui YY, Zhou YY, et al. Adrenergic β2-receptors mediates visceral hypersensitivity induced by heterotypic intermittent stress in rats[J]. PLoS One, 2014, 9 (4): e94726.

14Winston JH, Li Q, Sarna SK. Chronic prenatal stress epigenetically modifies spinal cord BDNF expression to induce sex-specific visceral hypersensitivity in offspring[J]. Neurogastroenterol Motil, 2014, 26 (5): 715-730.

15Matricon J, Muller E, Accarie A, et al. Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome[J]. Neurogastroenterol Motil, 2013, 25 (11): e740-e754.

16Chen ZY, Zhang XW, Yu L, et al. Spinal toll-like receptor 4-mediated signalling pathway contributes to visceral hypersensitivity induced by neonatal colonic irritation in rats[J]. Eur J Pain, 2015, 19 (2): 176-186.

17Hu S, Xiao Y, Zhu L, et al. Neonatal maternal deprivation sensitizes voltage-gated sodium channel currents in colon-specific dorsal root ganglion neurons in rats[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 304 (4): G311-G321.

18Zhou Q, Yang L, Larson S, et al. Decreased miR-199 augments visceral pain in patients with IBS through translational upregulation of TRPV1[J]. Gut, 2016, 65 (5): 797-805.

19Kirkup AJ, Brunsden AM, Grundy D. Receptors and transmission in the brain-gut axis: potential for novel therapies. Ⅰ. Receptors on visceral afferents[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 280 (5): G787-G794.

20Buéno L, Fioramonti J, Garcia-Villar R. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications. Ⅲ. Visceral afferent pathways: a source of new therapeutic targets for abdominal pain[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 278 (5): G670-G676.

21El-Salhy M, Wendelbo I, Gundersen D. Serotonin and serotonin transporter in the rectum of patients with irritable bowel disease[J]. Mol Med Rep, 2013, 8 (2): 451-455.

22El-Salhy M, Gilja OH, Gundersen D, et al. Endocrine cells in the ileum of patients with irritable bowel syndrome[J]. World J Gastroenterol, 2014, 20 (9): 2383-2391.

23Galligan JJ, Patel BA, Schneider SP, et al. Visceral hypersensitivity in female but not in male serotonin transporter knockout rats[J]. Neurogastroenterol Motil, 2013, 25 (6): e373-e381.

24Gilet M, Eutamene H, Han H, et al. Influence of a new 5-HT4 receptor partial agonist, YKP10811, on visceral hypersensitivity in rats triggered by stress and inflammation[J]. Neurogastroenterol Motil, 2014, 26 (12): 1761-1770.

25Castro J, Harrington AM, Hughes PA, et al. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3’,5’-monophosphate[J]. Gastroenterology, 2013, 145 (6): 1334-1346.

26Buckley MM, O’Halloran KD, Rae MG, et al. Modulation of enteric neurons by interleukin-6 and corticotropin-releasing factor contributes to visceral hypersensitivity and altered colonic motility in a rat model of irritable bowel syndrome[J]. J Physiol, 2014, 592 (23): 5235-5250.

27Yang Y, Cui X, Chen Y, et al. Exendin-4, an analogue of glucagon-like peptide-1, attenuates hyperalgesia through serotonergic pathways in rats with neonatal colonic sensitivity[J]. J Physiol Pharmacol, 2014, 65 (3): 349-357.

28Iwata Y, Ando K, Taniguchi K, et al. Identification of a highly potent and selective CB2 agonist, RQ-00202730, for the treatment of irritable bowel syndrome[J]. Bioorg Med Chem Lett, 2015, 25 (2): 236-240.

29Qian A, Song D, Li Y, et al. Role of voltage gated Ca2+ channels in rat visceral hypersensitivity change induced by 2,4,6-trinitrobenzene sulfonic acid[J]. Mol Pain, 2013, 9: 15.

30Song J, Zhang L, Bai T, et al. Mast cell-dependent mesenteric afferent activation by mucosal supernatant from different bowel segments of guinea pigs with post-infectious irritable bowel syndrome[J]. J Neurogastroenterol Motil, 2015, 21 (2): 236-246.

31宋军,杨姣,钱伟等. 感染后肠易激综合征豚鼠的肠系膜神经电活动变化[J]. 中华消化杂志, 2014, 34 (9): 603-606.

32Bian ZX. Novel insights about the mechanism of visceral hypersensitivity in maternally separated rats[J]. Neurogastroenterol Motil, 2012, 24 (7): 593-596.

33Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation[J]. Nat Rev Gastroenterol Hepatol, 2014, 11 (10): 611-627.

34Hughes PA, Moretta M, Lim A, et al. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in irritable bowel syndrome patients[J]. Brain Behav Immun, 2014, 42: 191-203.

35Carroll SY, O’Mahony SM, Grenham S, et al. Disodium cromoglycate reverses colonic visceral hypersensitivity and influences colonic ion transport in a stress-sensitive rat strain[J]. PLoS One, 2013, 8 (12): e84718.

36Crouzet L, Gaultier E, Del’omme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota[J]. Neurogastroenterol Motil, 2013, 25 (4): e272-e282.

37Wang H, Gong J, Wang W, et al. Are there any different effects ofBifidobacterium,LactobacillusandStreptococcuson intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model?[J]. PLoS One, 2014, 9 (3): e90153.

38Iorio N, Malik Z, Schey R. Profile of rifaximin and its potential in the treatment of irritable bowel syndrome[J]. Clin Exp Gastroenterol, 2015, 8: 159-167.

39Mansueto P, D’Alcamo A, Seidita A, et al. Food allergy in irritable bowel syndrome: The case of non-celiac wheat sensitivity[J]. World J Gastroenterol, 2015, 21 (23): 7089-7109.

(2015-07-27收稿;2015-08-07修回)

DOI:10.3969/j.issn.1008-7125.2016.06.010

*基金项目:国家自然科学基金(No.81200271)

Advances in Study on Effect of Neural Regulation Pathway on Pathogenesis of Visceral Hypersensitivity in Irritable Bowel Syndrome

BAITao,SONGJun,HOUXiaohua.

DepartmentofGastroenterology,UnionHospital,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology,Wuhan(430022)

Correspondence to: HOU Xiaohua, Email: houxh@medmail.com.cn

AbstractIrritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, which impacts on patients’ quality of life as well as physical and mental health. Studies have shown that visceral hypersensitivity (VHS) is an important pathophysiological factor in the pathogenesis of IBS, and neural regulation plays a key role in the process of VHS. This article reviewed the advances in study on effect of neural regulation pathway on pathogenesis of VHS in IBS.

Key wordsIrritable Bowel Syndrome;Visceral Hypersensitivity;Functional Gastrointestinal Disorders;

#本文通信作者,Email: houxh@medmail.com.cn

猜你喜欢
肠易激综合征
分析消化内科患者的肠易激综合征的发病原因以及临床治疗对策
舒肝健脾方治疗腹泻型肠易激综合征68例疗效观察
肠道菌群失衡与肠易激综合征
中医辨证分型治疗40例便秘型肠易激综合征的临床观察
匹维溴铵联合复方谷氨酰胺肠溶胶囊治疗肠易激综合征的临床效果
马来酸曲美布汀联合米安色林治疗肠易激综合征的效果分析
养心调神针法治疗肝郁脾虚腹泻型肠易激综合征探讨