徐婷婷 汤光宇
MRI在三阴性乳腺癌中的应用进展
徐婷婷 汤光宇*
三阴性乳腺癌(TNBC)具有特殊的生物学行为及临床病理学特征,侵袭性强,恶性程度高,临床缺乏有效的治疗方法,预后较差。TNBC较非TNBC型乳腺癌在MRI上具有一定的特征表现。灌注加权成像、扩散加权成像及磁共振波谱成像等功能MRI技术运用多定量参数指标可以定量评估TNBC血流灌注情况及细胞代谢状态,并对TNBC术前新辅助化疗效果具有监测作用。就MRI对TNBC与非TNBC的鉴别诊断及TNBC新辅助化疗评估及预后检测予以综述。
三阴性乳腺癌;功能磁共振成像;血流灌注;定量参数;新辅助化疗
Int J Med Radiol,2016,39(6):633-636
三阴性乳腺癌(triple-negative breast cancer,TNBC)即为雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)和人表皮生长因子受体2(human epidermal growth factor receptor 2,HER-2)均表达缺失的乳腺癌,占所有乳腺癌的10%~17%,越来越好发于年轻女性(年龄<50岁)。TNBC具有特殊的生物学行为及临床病理学特征,侵袭性强,恶性程度高,可早期转移,易复发,临床缺乏有效治疗方法,预后较差[1-2]。功能MRI可以无创、定量地评估肿瘤形态学、功能学及血管生成情况,不仅在TNBC诊断方面显示出很大潜力,对TNAC的治疗效果也具有监测作用[3]。
1.1 TNBC的平扫及动态增强MRI影像特征TNBC较其他亚型的乳腺癌在MRI上表现为更大单发肿块,Chen等[4]测量29例TNBC,大小为0.40~10.00 cm,其中93%的肿瘤直径>1.5 cm,明显大于非TNBC,且多为单发病灶。肿瘤边缘光滑一般用来预测良性病灶,而有些研究[5-6]表明TNBC边缘光滑。Uematsu等[7]报道56个TNBC中,39%的肿瘤边缘光滑,而非TNBC只有14%有此表现。与非TNBC相比,TNBC形状一般较规则,呈圆形或椭圆形,Youk等[6]研究表明,77%的TNBC肿块表现为圆形或椭圆形,而ER+及HER+的乳腺癌中分别仅有38%和27%表现为圆形或椭圆形肿块。总之,TNBC更倾向于良性肿瘤的形态学特征[8]。
有研究[5-6]表明,在T2WI上肿瘤内部呈高信号
或明显高信号是增加诊断TNBC准确性的一个信号特征。Uematsu等[7]报道33例TNBC中24例(73%)T2WI上表现为肿瘤中心明显高信号,其病理基础为肿瘤内纤维化、坏死及淋巴细胞浸润;56个TNBC中有80%表现为环状强化,具有光滑边缘的肿块较浸润性边缘肿块更易表现为环形强化,出现率分别为95%与71%。Teifke等[9]认为环状强化是较为准确地预测ER状态的指标,而非TNBC多表现为不均匀强化。因此,环形强化可以作为TNBC又一鉴别指征。时间信号强度曲线(time singal intensity curve,TIC)可用于乳腺癌的定性诊断和疗效评价。TIC一般分为3种类型:持续上升型(Ⅰ型)、平台型(Ⅱ型)、廓清型(Ⅲ型)。一般认为Ⅰ型及Ⅱ型强化类型是良性肿瘤MRI增强特点,Ⅲ型强化为恶性肿瘤特点。关于TNBC的TIC特征意见不一,有研究者认为TNBC病人TIC多表现为廓清型,病理基础是细胞外间隙较窄、血管通透性较高[10]。而Uematsu等[7]研究显示,仅28%的病灶表现为Ⅲ型曲线,认为Ⅲ型曲线在TNBC中并不常见,因为TNBC肿瘤内部为非均质强化。
1.2 动态增强MR灌注成像原理及对TNBC诊断价值动态增强MRI(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)机制是对比剂的缩短T1效应,亦称T1灌注成像,通过运用药代动力学模型(两室模型、三室模型等)及一系列数学拟合,对组织血管内对比剂进行时间-浓度与时间-信号强度之间的转换与分析,计算出可定量反映肿瘤微血管血流灌注情况的参数[11],包括:①容量转移常数(Ktrans):指对比剂从血管内扩散到血管外的速度常数,单位为min-1;②速率常数(kep):组织间对比剂经扩散重新回到血管内的速度常数,单位为min-1;③血管外细胞外间隙容积比(ve),是血管外细胞外间隙占整个体素的百分比。三者满足如下关系:kep= Ktrans/ve。其中,Ktrans既能反映肿瘤组织的血流量,又能反映局部的渗透率,被认为是最能反映肿瘤灌注情况的一个指标[12-13]。
近年,Li等[14]报道TNBC与其他亚型乳腺癌相比,在DCE-MR灌注成像上显示出高kep值(0.70∶0.56,P=0.044)及低ve值(0.33∶0.39,P=0.001),高级别TNBC较低级别的具有更高的kep值(0.82∶0.51,P=0.019),虽然Ktrans作为DCE-MR灌注成像的一个定量参数已被广泛接受,但在此研究中,TNBC组与非TNBC组的Ktrans值并未显示出明显差异。Li等[14]认为任何影响血流灌注的因素(如心脏输出功能异常及高血压)均可干扰Ktrans值的测定。Koo等[15]报道,病理级别越高、高核分级、ER-乳腺癌及TNBC在DCE-MR灌注成像上表现出高Ktrans值、高kep值,低ve值。TNBC组Ktrans值(0.576±0.346)较管腔上皮型乳腺癌组Ktrans值(0.420±0.263,P=0.056)高,TNBC的kep值(1.340±0.743)较管腔上皮型乳腺癌kep值(0.912±0.651,P=0.015)高,TNBC的ve值(0.468± 0.201)较管腔上皮型乳腺癌ve值(0.566±0.217,P=0.043)低。肿瘤通过分泌血管上皮生长因子(vascular endotheial growth factor,VEGF)、血小板源性上皮细胞生长因子等多种血管活性物质并作用于血管内皮,导致新生血管的生成,提高肿瘤微血管密度,从而增加血流量[16]。TNBC瘤内血管内VEGF明显增多,是ER+PR+型乳腺癌的3倍[17]。TNBC肿瘤供应血管在结构及功能上表现为血管迂曲、扩张、血管壁通透性增加。TNBC表现为高侵袭性,较非TNBC显示出更高代谢灌注率[18]。因此,TNBC高灌注及高渗透性在DCE-MRI表现为高Ktrans值、高kep值;而TNBC肿瘤细胞及血管增多,从而使血管外细胞外间隙减小,在DCE-MR灌注成像上表现为低ve值。
1.3 DWI对TNBC诊断价值MR扩散加权成像(diffusion-weighted imaging,DWI)是通过检测活体组织水分子扩散运动,反映组织水分子扩散快慢的MRI技术,具有敏感性高、检查时间短的优势。DWI量化指标表观扩散系数(apparent diffusion coefficient,ADC)值用于描述不同扩散梯度(b值)作用下,水分子扩散力大小的定量指标,DWI通过测量ADC值来进行量化分析,细胞增殖越旺盛,组织的细胞密度越大,ADC值就越低[19]。Martincich等[20]比较不同乳腺癌亚型间的ADC值,发现其与ER+细胞百分比之间有较弱相关性,但具有统计学意义(r=-0.168,P=0.020),激素受体阴性的肿瘤较激素受体阳性的肿瘤表现出更高的ADC值(1.110×10-3mm2/s∶1.050×10-3mm2/s,P=0.015),且其差异具有统计学意义。分子分型不同的乳腺癌,其ADC值也有差异,Youk等[6]研究也发现TNBC组平均ADC值(1.034× 10-3mm2/s)明显高于ER+(0.891×10-3mm2/s,P= 0.002)及HER+(0.839×10-3mm2/s,P<0.000 1),肿瘤中心T2WI的高信号与ADC值显著相关,且这种相关性TNBC组较其他亚型乳腺癌表现更显著,病理证实为肿瘤内部坏死,坏死区域的细胞内密度减低,使水分子更易扩散,ADC值增高。
1.4 MR波谱成像对TNBC诊断价值MR波谱成像(MRS)是目前能够无创性检测活体组织内化学物质、反映组织代谢信息的唯一方法。通过1H-MRS检测活体乳腺恶性病变中的总胆碱(Cho)等代谢物含量,对鉴别良恶性乳腺肿瘤的敏感性与特异性较高[21]。MRS是一种研究恶性细胞代谢状态的独特工具。Cao等[22]比较了TNBC与三阳性乳腺癌(triple-positive breast cancer,TPBC)的MRS结果,发现TNBC较TPBC显示出较高的Cho值(P=0.08)。Chen等[23]研究也得出类似结果,TNBC的Cho明显高于非TNBC,与TNBC表现为更高的增殖活性、胆碱激酶过表达有明显关联。而另一研究[24]则得出相反结论,TNBC较非TNBC表现出明显低的Cho含量,认为虽然相当一部分TNBC肿瘤属于基底样疾病,但它并不是同质性疾病。对于Cho代谢物含量水平与不同亚型乳腺癌的关系尚需进一步探讨。
1.5 MRI评估TNBC新辅助化疗效果及预测病理完全缓解率新辅助化疗(neoadjuvant chemotherapy,NAC)是对局部晚期乳腺癌病人术前进行的全身性辅助化疗,以缩小肿瘤、有效清除淋巴结及远处微转移病灶,使手术切除甚至保乳成为可能。由于MRI的软组织分辨力高、无辐射,对多中心病灶的检出率较高,近年来被越来越多地应用于乳腺癌NAC的疗效评价。许多研究[24-26]报道NAC后MRI测量残存肿瘤大小与病理相关性好,Loo等[25]认为,TNBC在MRI上形态学主要表现为单发、肿块样病变,较容易测量NAC前后残留体积改变及观察病理完全缓解率(pathological complete response,pCR),所以NAC后MRI测量残存肿瘤大小与病理相关性好。而ER+/HER-2-型在MRI上形态学往往较多表现为非肿块样病变,使评估体积改变更具挑战性,所以导致NAC后MRI测量残存肿瘤大小与病理相关性较差。DCE-MRI不仅可以显示病变的大小,还可以通过监测瘤体内的血流动力学参数,了解病灶的血流灌注情况,且血流动力学变化明显早于肿瘤体积大小的变化。Marcos de Paz等[27]对69例TNBC病人的75个病灶NAC早期的MRI形态学及动态增强改变进行研究,发现对NAC有反应的肿瘤最大的改变是病灶中心信号减低(75%)及流出型曲线的减少(64.2%)。Drisis等[28]研究报道,DCE-MRI定量参数(Ktrans、kep、ve)可以较好地预测TNBC组的pCR,治疗前Ktrans值较高的肿瘤对化疗的反应较好,pCR与非pCR组间Ktrans值差异有统计学意义(P=0.03),NAC治疗后TNBC中pCR组ve值明显增高。近年Bufi等[29]发现,NAC治疗前ADC值可预测TNBC及HER-2+亚型乳腺癌pCR情况,pCR与较非pCR组治疗前平均ADC值低,差异有统计学意义(1.034× 10-3mm2/s∶1.114×10-3mm2/s,P=0.05)。
2.1 乳腺X线摄影成像表现乳腺X线摄影是最便捷、价廉的乳腺癌检查方法,常用于高危人群筛选,对微钙化的显示优于超声和MRI,在乳腺癌早期诊断及筛查中有重要意义。多项研究发现TNBC的X线表现为:①主要为肿块型病变,且边缘较清晰光滑。肿块型病变占所有TNBC病变的58.2%~100%,肿块的形态多为圆形、椭圆形或分叶形,很少表现为不规则形,边缘毛刺少见。②少有钙化或为良性钙化,其发生率仅为4.7%~29.0%。③腺体局限性不对称性致密或局限性腺体结构扭曲。Yang等[30]研究显示,TNBC组33例全部为肿块样病变,其中TNBC肿块表现为圆形椭圆形的占48%,表现为分叶型的占27%,仅5例(15%)伴有钙化,并认为TNBC组很少伴有微钙化,可能与TNBC免疫亚型组的导管内原位癌发生率低有关。Shin等[31]认为TNBC多表现为圆形可能是由于生长迅速,肿瘤还未产生乳腺癌周反应。
2.2 超声成像表现传统超声只能从形态学上进行诊断,且易受操作者技术影响。与非TNBC相比,TNBC表现为明显的低回声肿块,少伴微钙化;边缘呈浅分叶、边缘僵硬边缘少有毛刺征;周边无高回声晕;后方回声不变等。Ko等[32]研究报道TNBC高度去分化、快速生长易导致坏死囊变,因此在超声上表现为明显低回声。Wojcinski等[33]研究显示,TNBC边缘环形回声较非TNBC少见,肿瘤快速增长,影响肿瘤表面,所以在超声上粘连表现较少见。
弹性超声及3D超声成像能克服传统超声二维影像的局限性,但弹性超声一般用于乳腺良恶性肿瘤的鉴别,很少用于乳腺癌亚型的鉴别,Kojima等[34]评估40例TNBC弹性超声成像特点,研究结果发现TNBC多表现为较硬的肿瘤,TNBC的弹性分数多为4~5分,表明TNBC是富细胞、少纤维组织的肿瘤,弹性分数与浸润性导管癌一致。Li等[35]研究显示,TNBC在3D超声冠状面上缺乏汇聚征。
由此可见,TNBC在乳腺X线摄影及超声检查中形态学与常规MRI平扫类似,更倾向于良性肿瘤的影像特点。MRI具有良好的软组织分辨力,不受乳腺腺体致密度的影响,而且极少受操作者技术影响,
能够提供传统超声及乳腺X线摄影无法显示的病灶细节信息,最大优势是可以提高微小病灶及多发病灶的检出率,可以运用定量参数指标对乳腺癌进行定量分析[36]。将MRI与乳腺X线摄影、多模式超声摄影结合,能进一步提高TNBC的检测准确性。
综上所述,MRI是目前准确诊断TNBC的影像检查技术,TNBC较非TNBC型乳腺癌易表现为体积大、单一病灶、边缘光滑、环形强化、T2WI呈高信号,高Ktrans值、高kep值、低ve值,高ADC值的特征。而且,MRI功能成像在TNBC新辅助化疗疗效的评估中具有较高的价值,具体表现为测量残余肿瘤的范围与病理符合率高,DCE-MRI定量参数(Ktrans、kep、ve)及ADC值可以较好地预测TNBC组的pCR,为临床工作提供有效补充。
[1]Charfare H,Limongelli S,Purushotham AD.Neoadjuvant chemotherapy in breast cancer[J].Br J Surg,2005,92:14-23.
[2]Palma G,Frasci G,Chirico A,et al.Triple negative breast cancer: looking for the missing link between biology and treatments[J].Oncotarget,2015,6:26560-26574.
[3]Price ER,Wong J,Mukhtar R,et al.How to use magnetic resonance imaging following neoadjuvant chemotherapy in locally advanced breast cancer[J].World J Clin Cases,2015,3:607-613.
[4]Chen JH,Agrawal G,Feig B,et al.Triple-negative breast cancer: MRI features in 29 patients[J].Ann Oncol,2007,18:2042-2043.
[5]Sung JS,Jochelson MS,Brennan S,et al.MR imaging features of triple-negative breast cancers[J].Breast J,2013,19:643-649.
[6]Youk JH,Son EJ,Chung J,et al.Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging:comparison with other breast cancer subtypes[J].Eur Radiol, 2012,22:1724-1734.
[7]Uematsu T,Kasami M,Yuen S.Triple-negative breast cancer:correlation between MR imaging and pathologic findings[J].Radiology, 2009,250:638-647.
[8]Schrading S,Kuhl CK.Mammographic,US,and MR imaging phenotypes of familial breast cancer[J].Radiology,2008,246:58-70.
[9]Teifke A,Behr O,Schmidt M,et al.Dynamic MR imaging of breast lesions:correlation with microvessel distribution pattern and histologic characteristics of prognosis[J].Radiology,2006,239:351-360.
[10]Dogan BE,Gonzalez-Angulo AM,Gilcrease M,et al.Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound,and MRI[J].AJR,2010,194:1160-1166.
[11]Hodgson RJ,Connolly S,Barnes T,et al.Pharmacokinetic modeling of dynamic contrast-enhanced MRI of the hand and wrist in rheumatoid arthritis and the response to anti-tumor necrosis factoralpha therapy[J].Magn Reson Med,2007,58:482-489.
[12]Ingrisch M,Sourbron S,Morhard D,et al.Quantification of perfusion and permeability in multiple sclerosis:dynamic contrast-enhanced MRI in 3D at 3T[J].Invest Radiol,2012,7:252-258.
[13]Semple SI,Harry VN,Parkin DE,et al.A combined pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging predicts response to chemoradiation in locally advanced cervical cancer[J].Int J Radiat Oncol Biol Phys,2009,75: 611-617.
[14]Li SP,Padhani AR,Taylor NJ,et al.Vascular characterisation of triple negative breast carcinomas using dynamic MRI[J].Eur Radiol, 2011,21:1364-1373.
[15]Koo HR,Cho N,Song IC,et al.Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers[J].JMRI,2012,36:145-151.
[16]Uzzan B,Nicolas P,Cucherat M,et al.Microvessel density as a prognostic factor in women with breast cancer:a systematic review of the literature and meta-analysis[J].Cancer Res,2004,64:2941-2955.
[17]Linderholm BK,Hellborg H,Johansson U,et al.Significantly higher levels of vascular endothelial growth factor(VEGF)and shorter survival times for patients with primary operable triple-negative breast cancer[J].Ann Oncol,2009,20:1639-1646.
[18]An YS,Kang DK,Jung YS,et al.Tumor metabolism and perfusion ratio assessed by18F-FDG PET/CT and DCE-MRI in breast cancer patients:Correlation with tumor subtype and histologic prognostic factors[J].Eur J Radiol,2015,84:1365-1370.
[19]Tang MY,Zhang XM,Chen TW,et al.Various diffusion magnetic resonance imaging techniques for pancreatic cancer[J].World J Radiol,2015,7:424-437.
[20]Martincich L,Deantoni V,Bertotto I,et al.Correlations between diffusion-weighted imaging and breast cancer biomarkers[J].Eur Radiol,2012,22:1519-1528.
[21]Schmitz AM,Veldhuis WB,Menke-Pluijmers MB,et al.Multiparametric MRI with dynamic contrast enhancement,diffusionweighted imaging,and 31-phosphorus spectroscopy at 7 T for characterization of breast cancer[J].Invest Radiol,2015,50:766-771.
[22]Cao MD,Lamichhane S,Lundgren S,et al.Metabolic characterization of triple negative breast cancer[J].BMC Cancer,2014,14:941.
[23]Chen JH,Mehta RS,Baek HM,et al.Clinical characteristics and biomarkers of breast cancer associated with choline concentration measured by1H MRS[J].NMR Biomed,2011,24:316-324.
[24]Nakahara H,Yasuda Y,Machida E,et al.MR and US imaging for breast cancer patients who underwent conservation surgery after neoadjuvant chemotherapy:comparison of triple negative breast cancer and other intrinsic subtypes[J].Breast Cancer,2011,18:152-160.
[25]Loo CE,Straver ME,Rodenhuis S,et al.Magnetic resonance imaging responsemonitoringofbreastcancerduringneoadjuvant chemotherapy:relevance of breast cancer subtype[J].J Clin Oncol, 2011,29:660-666.
[26]McGuire KP,Toro-Burguete J,Dang H,et al.MRI staging after neoadjuvant chemotherapy for breast cancer:does tumor biology affect accuracy[J].Ann Surg Oncol,2011,18:3149-3154.
[27]Marcos de Paz LM,Tejerina Bernal A,Arranz Merino ML,et al. Breast MR imaging changes after neoadjuvant chemotherapy:correlation with molecular subtypes[J].Radiologia,2012,54:442-448.
[28]Drisis S,Metens T,Ignatiadis M,et al.Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvanttreatment for locally advanced breast cancer:the impact of breast cancer subtypes on the diagnostic accuracy[J].Eur Radiol,2016,26: 1474-1484.
[29]Bufi E,Belli P,Costantini M,et al.Role of the apparent diffusion coefficient in the prediction of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer[J].Clin Breast Cancer,2015,15:370-380.
[30]Yang WT,Dryden M,Broglio K,et al.Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women[J].Breast Cancer Res Treat,2008,111:405-410.
[31]Shin HJ,Kim HH,Huh MO,et al.Correlation between mammographic and sonographic findings and prognostic factors in patients with node-negative invasive breast cancer[J].Br J Radiol,2011,84: 19-30.
[32]Ko ES,Lee BH,Kim HA,et al.Triple-negative breast cancer:correlation between imaging and pathological findings[J].Eur Radiol, 2010,20:1111-1117.
[33]Wojcinski S,Soliman AA,Schmidt J,et al.Sonographic features of triple-negative and non-triple-negative breast cancer[J].J Ultr Med, 2012,31:1531-1541.
[34]Kojima Y,Tsunoda H.Mammography and ultrasound features of triple-negative breast cancer[J].Breast Cancer,2011,18:146-151.
[35]Li Z,Tian J,Wang X,et al.Differences in multi-modal ultrasound imaging between triple negative and non-triple negative breast cancer[J].Ultrasound Med Biol,2016,42:882-890.
[36]Carey LA,Dees EC,Sawyer L,et al.The triple negative paradox:primary tumor chemosensitivity of breast cancer subtypes[J].Clin Cancer Res,2007,13:2329-2334.
(收稿2016-01-11)
Application progress of MRI in triple-negative breast cancer
XU Tingting,TANG Guangyu.
Department of Radiology,Shanghai Tenth People’s Hospital,School of Medicine,Tongji University,Shanghai 200072,China
Triple-negative breast cancer(TNBC)is characterized by distinct biological and clinical pathological features.Due to its high aggressive and malignant,and lack of effective therapeutic targets,it has a worse prognosis. Compared with Non-TNBC,TNBC shows some characteristics in magnetic resonance imaging.Functional MR imaging,such as perfusion weighted imaging,diffusion-weighted imaging,and magnetic resonance spectroscopy,can quantitatively evaluate the tumor microvascular perfusion and cellular metabolism,and can also monitor neoadjuvant chemotherapy effect on TNBC. Here,we summarized the MRI application status on identifying of TNBC and assessing of neoadjuvant chemotherapy efficacy.
Triple-negative breast cancer;Functional magnetic resonance imaging;Blood perfusion;Quantitative parameter;Neoadjuvant chemotherapy
10.19300/j.2016.Z4079
R737.9;R445.2
A
同济大学附属第十人民医院放射科,上海200072
汤光宇,E-mail:tgy17@126.com
*审校者