李伟伟
【内容摘要】从中学学生的实际情况出发,结合当前的中学生在运算过程中存在的计算问题进行分析研究,从而根据情况解决学生运算过程中的运算过程、方法的错误。通过对中学生提高运算能力的意义的认识,可以看出中学数学运算能力的培养重要性。本文先是对初级中学生的运算能力以及培养途径做了介绍,然后总结以往经验方法,对中学数学教学中如何去培养学生运算能力总结了三种有效的方法和途径。
【关键词】中学运算能力 培养 途径 中学生
中学生的运算能力就是一种集算法、算理、计算、转化、推理等多种数学思想方法为一体的数学综合的能力。《中学数学教学大纲》和高考《考试说明》明确的对运算能力作出了要求,由此明确了中学生运算能力的地位与重要性。因此,培养中学生的运算能力,是当代老师教学过程和学生学习的基本的任务。
如果学习数学离开了运算能力,那么数学及相关学科都将没有办法独立生存。但是从现阶段看,我国许多中学对学生运算能力的培养和要求是极其忽视的,导致中学生的数学运算能力偏低。以下本人就学生运算能力的培养,浅谈下个人的几点看法。
一、正确理解和掌握数学基础知识并灵活运用算理、公式、法则
首先,教师在教学过程要使学生正确理解和掌握数学基础知识,只有这些最基本的知识被掌握了才会展开以后的学习。教师要教给学生如何正确运用相关的概念、法则和公式,通过不断地去练习。其次,教师要提高学生运用运算公式进行推理运算。运算过程的实质运用基础技能经行推理的过程,在中学数学中,有很多都是运用公式去计算,多数题目有多种计算方法。我们教师在教学过程只有把有关运算的知识、技能、方法和思维能力有效地结合在一起,这样在解决有关数学运算问题时才能做到轻松、简单、正确。数学概念、公式、法则,有的是解释了运算的依据,说明了这样算的理由,有的是运算的方法,让学生知道运算的过程,即算法,学生学习了有关的性质、公式等,在理解的基础上记忆,运用公式、法则,然后通过一系列运算练习逐渐形成某种运算能力①。
二、数学思想在运算过程中的运用
数学运算能力的发展,和各种数学思想方法的运用紧密的相联系,因此,在中学数学教学过程中,应让学生掌握更多的数学思想方法,如:数形结合、类比与转化、函数与方程、迭代与递归等的教学②。以上数学思想方法的运用,可以有效的解决有关的数学问题,也是提高学生的运算能力的有效途径。
例1:用赵爽弦图,可以帮助学生更加深刻地理解平均值不等式
(a≥0,b≥0,当且仅当a=b时等号成立)。
例2:已知:实数x,y满足(x-2)2 +(y-1)2=1,求 的最值。
如果只从代数的角度去思考,我们很难把条件中的方程与问题中的分式做有效的转化,而根据数形结合的思想,该题可转化为:求圆(x-2)2+(y-1)2 =1上的点(x,y)与点(0,1)连线斜率的最值。这样的角度思考可以使解题过程大大简化,而且使解题思路变得非常清晰容易理解。
我们还可以利用类比思想,根据等差数列的性质与解题方法,得到等比数列的相应性质与解题方法,从椭圆的性质与方法中得到双曲线的性质与方法。递推思想在解决数列问题、错位排列问题等……
所以在数学运算的过程中,数学思想方法的运用,可以优化解题过程,选择解决问题的最佳方法。
三、养成良好的习惯
中学教师在教学过程中,要不断的培养锻炼学生良好习惯的养成,以便于使学生可以有良好的运算习惯、学习习惯等可以保证运算的准确率。反思错误的原因就是一个好的习惯,学生只有不断的反省自己的错误,不断的纠正自己的错误,然后有一个良好的运算习惯,以及灵活的思维能力,这样就可以保证运算的准确性。
例如:计算
有一位同学的解法是:
原式=2(x-2)+5(x+2)-4(x+3)
=3x-6
很明显的可以看出来,这个学生的结果产生了错误,那么产生这样错误的原因又是什么呢?这个时候教师在教学的过程中所起到的作用是对学生引导,教师应该利用学生产生错误的时候的思维模式,让学生自己找到错误错在,这样不仅能加深学生学习的印象,还能够使学生认识到自己的错误思维,让学生了解到自己的错误和正确之间的联系,从而在逆流中前进,在错误中前行③。
总结
随着新课程计划的实施,当代中学生的运算能力以及成为了学生的一块绊脚石,然而运算能力作为数学以及其他学科的学习基础,所以中学教师在培养学生运算能力已经成为了重中之重。本论文希望可以让中学教师在教学过程中发现运算的问题、研究运算的问题以及解决运算能力的问题,可以很好的提高学生的运算能力。
【注释】
① 孙孝勇、孙朝仁. 数学运算能力培养刍议[J]. 连云港教学学院学报,1997 (3):3-6.
② 俞素玲. 运算能力发展的阶段性及其培养途径[J]. 上海:上海中学数学,2008(1):4-7.
③ 王林全. 发展学生计算能力的途径[J]. 数学通报,2003(11):1-2.
(作者单位:安徽省定远县阳光学校)