IRE1-XBP1未折叠蛋白反应与老年疾病

2016-02-01 14:14刘剀,葛鹏飞,罗毅男
中国老年学杂志 2016年3期



IRE1-XBP1未折叠蛋白反应与老年疾病

刘剀葛鹏飞罗毅男

(吉林大学白求恩第一医院神经肿瘤外科,吉林长春130021)

〔关键词〕ERSR;UPR;IRE1;XBP1;老年疾病

第一作者:刘剀(1986-),男,在读硕士,主要从事中枢神经系统肿瘤的外科治疗与基础研究。

内质网(ER)控制着蛋白质分泌途径中的关键步骤,是新合成蛋白质正确折叠为成熟蛋白质的关键场所。细胞分泌蛋白质需求增加、糖剥夺、缺氧和氧化还原环境变化等的细胞应激,会造成未折叠或错误折叠的蛋白质在ER内蓄积。这些统称为ER应激反应(ERSR)。发生ERSR时,细胞启动一系列被称为未折叠蛋白反应(UPS)的适应机制以恢复ER稳态(ER)。一方面UPS大幅降低蛋白质转录水平并介导ER相关性降解(ERAD);另一方面诱导能促进蛋白质正确折叠的分子伴侣和酶的表达〔1〕。若ERSR持续,稳态无法恢复,UPS将介导细胞凋亡〔2〕。一些特化的分泌细胞,例如浆细胞和胰岛B细胞,蛋白质合成和分泌需求巨大,其正常生理功能的维持亦依赖于UPR〔3〕。哺乳动物细胞的UPR主要由三条信号通路构成。这些通路均由位于ER膜上的蛋白质启动,这些跨膜蛋白质能感知ER腔内未折叠或错误折叠蛋白质的蓄积,并能激活下游具有碱性亮氨酸拉链结构域(b-ZIP)的转录因子。这三对“感受器蛋白-转录因子”分别是(i)inositol requiring kinase 1 (IRE1)和X-box binding protein 1 (XBP1),(ii)eukaryotic translation initiation factor 2-alpha kinase 3 (eIF2AK3又称protein kinase RNA-activated like endoplasmic reticulum kinase,PERK)和activating transcription factor 4 (ATF4)及既充当感受器蛋白又充当转录因子的(iii)activating transcription factor 6 (ATF6)〔1〕。其中IRE1-XBP1通路的靶基因参与调控典型活跃分泌细胞的特征性活动,如蛋白质的折叠、转位和分泌及脂类合成、ERAD等。eIF2AK3/PERK-ATF4通路一方面全面减少蛋白质翻译总量以减少进入ER的蛋白质流量,另一方面eIF2AK3/PERK活化和eIF2alpha磷酸化却能促进包括ATF4 mRNA在内的5'端非翻译区具有短开放阅读框架(short ORF)的mRNA翻译。ATF4进而广泛诱导涉及氧化还原反应、氨基酸代谢、ER分子伴侣和折叠酶合成的靶基因〔4〕。此外,ATF4能诱导ER应激相关蛋白〔CHOP(C/EBP-homologous protein)〕〔5〕和〔GADD34(growth arrest and DNA damage-inducible 34)〕〔6〕等促凋亡基因的表达。ATF6调控的转录则主要提高ER折叠蛋白质的能力,但也与其他UPR调控通路有一定程度的重叠〔1〕。

1IRE1 alpha-XBP1通路的分子机制

哺乳动物IRE1蛋白存在两种亚型,IRE1 alpha和IRE1 beta,在人类分别由ERN1和ERN2基因编码,IRE1 alpha广泛表达于各类细胞,而IRE1 beta仅见于胃肠道上皮细胞中〔7〕。IRE1 alpha是一种具有双重酶活性的I型跨膜蛋白,由N末端的ER腔结构域(IRE1-LD)和丝氨酸/苏氨酸激酶结构域加上位于胞质内的C末端核糖核酸酶(RNase)结构域构成。当未折叠或错误折叠蛋白质在ER内蓄积时,IRE1 alpha形成二聚体或寡聚体,以反式作用方式(trans-action)介导自磷酸化(autophosphorylation),激活RNase结构域〔8〕。未折叠或错误折叠蛋白质激活IRE1的确切机制尚未完全阐明,或许是通过其暴露的疏水残基竞争性结合原本与IRE1-LD结合而使其处于失活状态的BiP(binding immunoglobulin protein,酵母为KAR2,人类为Grp78)实现的。BiP与IRE1-LD解离以便与蓄积的未折叠蛋白结合,游离的IRE1形成二聚体或寡聚体进而活化〔9〕。与这种假说矛盾的是,剔除酵母IRE1-LD结构域上与BiP/KAR2结合的位点并不能引起IRE1的持续激活〔9〕。此外,酵母和哺乳动物IRE1晶体结构分析均表明其与主要组织相容性复合体(MHC-Ⅰ)分子肽结合结构域的相似性〔10〕。随后的研究显示IRE1-LD可直接与某些肽段结合〔11〕。这些研究提示可能有其他激活途径的存在,例如IRE1-LD直接与未折叠蛋白结合。激活的IRE1表现出激酶活性进而自磷酸化。然而迄今尚未发现IRE1激酶活性的其他底物。激酶结构域自磷酸化并结合ATP(体外为ADP),别构调节二聚体或寡聚体的形成,进而激活RNase结构域〔12〕。IRE1 alpha激活后通过RNase结构域切除酵母HAC1 mRNA或动物XBP1 mRNA中的一段内含子,拼接后引起阅读框架的改变,从而翻译出具有活性的相应蛋白质,作为转录因子诱导特定靶基因的表达〔13〕。酵母中由tRNA连接酶连接切除后的内含子〔14〕,动物中这一连接则由RTCB/archease复合体完成〔15〕。不寻常的是,未活化的重原子数/X-盒结合蛋白(HAC1/XBP1 mRNA)裂解出内含子而被激活的过程发生于茎-环结构(stem-loop structure)处〔16〕。活化的IRE1 alpha既可以在茎-环结构也可以在非茎-环结构处降解穿过ER的mRNA,这一过程被称为调节性IRE1依赖的衰变(RIDD)。RIDD通过减少新合成蛋白质进入ER减轻蛋白质折叠负荷,从而缓解ERSR〔17〕。最近的一项体外研究显示,尽管IRE1单体或二聚体已具有调节IRE-1α依赖性衰竭(RIDD)活性,HAC1/XBP1 mRNA的裂解则需要IRE1寡聚体方可完成〔18〕。在体内这种底物偏好也许会决定细胞命运,IRE1拼接后激活的XBP1促使细胞存活,而RIDD则促使细胞死亡。然而,不同组织细胞中XBP1与RIDD被激活的程度及其相互关系有所差异,使得最终转归也不尽相同。IRE1 alpha激活后亦能通过与肿瘤坏死因子受体相关的因子2(TRAF2)相互作用而激活凋亡信号调节激酶1(ASK1)和JNK(c-jun N-terminal kinase)进而促进细胞凋亡〔19〕。

2IRE1-XBP1通路与老年疾病

动物实验显示IRE1-XBP1通路与多种老年疾病有关,主要是神经退行性疾病、炎症性疾病、代谢性疾病、肝功能不全、心脑缺血疾病和肿瘤。将其作为靶点将有助于治疗这些疾病〔3〕。

2.1神经退化性疾病在小鼠肌萎缩性侧索硬化症(ALS)模型中,XBP1缺乏将导致自噬增强,进而促进突变的超氧化物歧化酶-1(SOD1)的清除而降低其活性〔20〕。同样的,在小鼠亨廷顿病(Huntington's disease)模型中,XBP1缺乏也能通过自噬降解突变蛋白并延迟疾病进展〔21〕。该研究表明XBP1缺乏是通过诱导神经元中FOXO1基因表达(编码调节自噬的关键转录因子)而促发自噬的。在脊索损伤(SCI)后运动神经元的修复中,XBP1不可或缺〔22〕。而在小鼠朊粒有关疾病进展中,XBP1可有可无〔23〕。在小鼠实验性脑缺血模型中发现XBP1转录本拼接现象〔24〕。果蝇(drosophila)与哺乳动物阿尔兹海默病(Alzheimer's disease)模型细胞培养均提示XBP1转录本拼接现象似有神经保护作用〔25〕。这一概念在阿尔兹海默患者受累脑组织检测中得到了进一步印证,研究表明受累脑组织中存在XBP1转录本拼接和IRE1 alpha磷酸化〔26〕。另一项基于细胞培养和小鼠帕金森病(Parkinson's disease)模型的研究亦证明XBP1转录本拼接具有细胞保护作用〔27〕。除此之外,多发性硬化症(MS)脱髓鞘病变中,XBP1的表达也有所增加〔28〕。

2.2炎症性疾病在小鼠炎性肠病(IBD)模型中,IRE1 beta通过维持ER减缓疾病进展〔29〕。铎受体2(TLR2)和铎受体4(TLR4)促发的IRE1 alpha活化和XBP1转录本拼接在巨噬细胞释放促炎细胞因子的过程中举足轻重〔30〕。XBP1在树突状细胞(dendritic cells)存活与分化中亦至关重要〔31〕。

2.3代谢性疾病研究表明,肝特异性XBP1缺乏小鼠在饲喂高碳水化合物饮食时,甘油三酯和胆固醇合成均较对照组小鼠少,因此可免于罹患脂肪肝(fatty liver)。这是因为XBP1能调节涉及脂肪酸合成的几种酶的表达〔32〕。XBP1缺乏也与胰岛素抵抗(insulin-resistance)有关,XBP1缺乏小鼠可能罹患高胰岛素血症(hyperinsulinemia)、高糖血症(hyperglycemia)、糖和胰岛素耐量异常(impaired glucose and insulin tolerance)以及体重增加〔33〕;通过直接干预FOXO1,活化的XBP1可减轻肝胰岛素抵抗〔34〕。此外,XBP1通过与PI3K调节亚基相互作用,增加细胞对胰岛素的敏感性〔35〕。

2.4肿瘤 基因筛查显示,人类肿瘤的发生与IRE1 alpha的突变有关〔36〕。肿瘤的生长、转移和化疗抗药性的产生与IRE1 alpha-XBP1信号通路密切相关〔37〕。XBP1的表达和活化与乳腺癌(breast cancer)的临床转归〔38〕和胰腺癌(pancreatic cancer)的血管生成〔39〕均有一定关联性。更有甚者,阻遏XBP1的表达可使肿瘤在缺氧环境下的生长严重受限〔40〕。小鼠胶质母细胞瘤(glioblastoma)的生长、血管生成和侵袭倚重于IRE1 alpha上调相应促炎细胞因子和血管生成因子〔40〕。XBP1决定浆细胞的终末分化〔41〕并在多发性骨髓瘤(multiple myeloma,MM)中过表达〔42〕。多条证据链显示多发性骨髓瘤的发病机制涉及IRE1 alpha-XBP1信号通路〔43〕。此外,化疗抗药性的产生往往与XBP1有错综复杂的联系〔43〕。最近的一项研究则提示XBP1的去活化亦能使肿瘤产生对硼替佐米(bortezomib)的抗药性〔44〕。

3展望

哺乳动物ER不仅是物质代谢和能量转化的“生产车间”,也是细胞内外各种信号转导通路的“十字路口”。近年对ER应激反应和未折叠蛋白反应的研究使得ER作为与细胞膜和细胞核并列的细胞信号转导“第三界面”的角色得到阐明。IRE1-XBP1通路作为未折叠蛋白反应三条主要通路中最经典的一条,不仅是细胞内外应激与细胞质和细胞核内效应器的桥梁,决定细胞转归,而且与神经退行性疾病、炎症性疾病、代谢性疾病和肿瘤等多种老年疾病有着十分密切的联系。随着IRE1-XBP1通路等ER应激反应和未折叠蛋白反应调节机制研究的逐渐深入,通过激活或抑制这些通路,或许对有关疾病的治疗有所裨益。

4参考文献

1Walter P,Ron D.The unfolded protein response:from stress pathway to homeostatic regulation 〔J〕.Science,2011;334(6059):1081-6.

2Davenport EL,Moore HE,Dunlop AS,etal.Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells 〔J〕.Blood,2007;110(7):2641-9.

3Hetz C,Chevet E,Harding HP.Targeting the unfolded protein response in disease 〔J〕.Nat Rev Drug Discov,2013;12(9):703-19.

4Lange PS,Chavez JC,Pinto JT,etal.ATF4 is an oxidative stress-inducible,prodeath transcription factor in neurons in vitro and in vivo〔J〕.J Exp Med,2008;205(5):1227-42.

5Averous J,Bruhat A,Jousse C,etal.Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2phosphorylation〔J〕. J Biol Chem,2004;279(7):5288-97.

6Ma Y,Hendershot LM.Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress〔J〕.J Biol Chem,2003;278(37):34864-73.

7Tirasophon W,Welihinda AA,Kaufman RJ.A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease(Ire1p)in mammalian cells〔J〕.Genes Dev,1998;12(12):1812-24.

8Korennykh AV,Egea PF,Korostelev AA,etal.The unfolded protein response signals through high-order assembly of Ire 1〔J〕.Nature,2009;457(7230):687-93.

9Kimata Y,Ishiwata-Kimata Y,Ito T,etal.Two regulatory steps of ER-stress sensor Ire 1 involving its cluster formation and interaction with unfolded proteins〔J〕.J Cell Biol,2007;179(1):75-86.

10Credle JJ,Finer-Moore JS,Papa FR,etal.On the mechanism of sensing unfolded protein in the endoplasmic reticulum〔J〕.Proc Natl Acad Sci U S A,2005;102(52):18773-84.

11Gardner BM,Walter P.Unfolded proteins are Ire 1-activating ligands that directly induce the unfolded protein response〔J〕.Science,2011;333(6051):1891-4.

12Korennykh AV,Egea PF,Korostelev AA,etal.Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire 1〔J〕.BMC Biol,2011;9(1):48.

13Cox JS,Shamu CE,Walter P.Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase〔J〕.Cell,1993;73(6):1197-206.

14Sidrauski C,Cox JS,Walter P.tRNA ligase is required for regulated mRNA splicing in the unfolded protein response〔J〕.Cell,1996;87(3):405-13.

15Jurkin J,Henkel T,Nielsen AF,etal.The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells〔J〕.EMBO J,2014;33(24):2922-36.

16Aragon T,van Anken E,Pincus D,etal.Messenger RNA targeting to endoplasmic reticulum stress signalling sites〔J〕.Nature,2009;457(7230):736-40.

17Han D,Lerner AG,Vande-Walle L,etal.IRE 1 alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates〔J〕.Cell,2009;138(3):562-75.

18Tam AB,Koong AC,Niwa M.Ire 1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD〔J〕.Cell Rep,2014;9(3):850-8.

19Kim I,Shu CW,Xu W,etal.Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1〔J〕.J Biol Chem,2009;284(3):1593-603.

20Hetz C,Thielen P,Matus S,etal.XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy〔J〕.Genes Dev,2009;23(19):2294-306.

21Vidal RL,Figueroa A,Court FA,etal.Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy〔J〕.Hum Mol Genet,2012;21(10):2245-62.

22Valenzuela V,Collyer E,Armentano D,etal.Activation of the unfolded protein response enhances motor recovery after spinal cord injury〔J〕.Cell Death Dis,2012;3(2):e272.

23Hetz C,Lee AH,Gonzalez-Romero D,etal.Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis〔J〕.Proc Natl Acad Sci U S A,2008;105(2):757-62.

24Morimoto N,Oida Y,Shimazawa M,etal.Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice〔J〕.Neuroscience,2007;147(4):957-67.

25Casas-Tinto S,Zhang Y,Sanchez-Garcia J,etal.The ER stress factor XBP1s prevents amyloid-beta neurotoxicity〔J〕.Hum Mol Genet,2011;20(11):2144-60.

26Lee JH,Won SM,Suh J,etal.Induction of the unfolded protein response and cell death pathway in Alzheimer's disease,but not in aged Tg2576 mice〔J〕.Exp Mol Med,2010;42(5):386-94.

27Sado M,Yamasaki Y,Iwanaga T,etal.Protective effect against Parkinson's disease-related insults through the activation of XBP1〔J〕.Brain Res,2009;1257(1):16-24.

28Mhaille AN,McQuaid S,Windebank A,etal.Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions〔J〕.J Neuropathol Exp Neurol,2008;67(3):200-11.

29Bertolotti A,Wang X,Novoa I,etal.Increased sensitivity to dextran sodium sulfate colitis in IRE1 beta-deficient mice〔J〕.J Clin Investig,2001;107(5):585-93.

30Martinon F,Chen X,Lee AH,etal.TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages〔J〕.Nat Immunol,2010;11(5):411-8.

31Iwakoshi NN,Pypaert M,Glimcher LH.The transcription factor XBP-1 is essential for the development and survival of dendritic cells〔J〕.J Exp Med,2007;204(10):2267-75.

32Lee AH,Scapa EF,Cohen DE,etal.Regulation of hepatic lipogenesis by the transcription factor XBP1〔J〕.Science,2008;320(5882):1492-6.

33Ozcan U,Cao Q,Yilmaz E,etal.Endoplasmic reticulum stress links obesity,insulin action,and type 2diabetes〔J〕.Science,2004;306(5695):457-61.

34Zhou Y,Lee J,Reno CM,etal.Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction〔J〕.Nat Med,2011;17(3):356-65.

35Winnay JN,Boucher J,Mori MA,etal.A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response〔J〕.Nat Med,2010;16(4):438-45.

36Guichard C,Amaddeo G,Imbeaud S,etal.Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma〔J〕.Nat Genet,2012;44(6):694-8.

37Shajahan AN,Riggins RB,Clarke R.The role of X-box binding protein-1 in tumorigenicity〔J〕.Drug News Perspect,2009;22(5):241-6.

38Chen X,Iliopoulos D,Zhang Q,etal.XBP1 promotes triple-negative breast cancer by controlling the HIF1 alpha pathway〔J〕.Nature,2014;508(7494):103-7.

39Romero-Ramirez L,Cao H,Regalado MP,etal.X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas〔J〕.Transl Oncol,2009;2(1):31-8.

40Auf G,Jabouille A,Guerit S,etal.Inositol-requiring enzyme 1 alpha is a key regulator of angiogenesis and invasion in malignant glioma〔J〕.Proc Natl Acad Sci U S A,2010;107(35):15553-8.

41Iwakoshi NN,Lee AH,Vallabhajosyula P,etal.Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1〔J〕.Nat Immunol,2003;4(4):321-9.

42Carrasco DR,Sukhdeo K,Protopopova M,etal.The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis〔J〕.Cancer Cell,2007;11(4):349-60.

43Clarke HJ,Chambers JE,Liniker E,etal.Endoplasmic reticulum stress in malignancy〔J〕.Cancer Cell,2014;25(5):563-73.

44Leung-Hagesteijn C,Erdmann N,Cheung G,etal.Xbp1s-negative tumor B cells and preplasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma〔J〕.Cancer Cell,2013;24(3):289-304.

〔2015-02-19修回〕

(编辑袁左鸣)

通讯作者:罗毅男(1951-),男,教授,主要从事中枢神经系统肿瘤的外科治疗与基础研究。

〔中图分类号〕R34

〔文献标识码〕A

〔文章编号〕1005-9202(2016)03-0737-03;doi:10.3969/j.issn.1005-9202.2016.03.099