踝关节炎的病因机制及相关研究进展

2015-12-14 08:38张树张建中包贝西魏芳远
中华骨与关节外科杂志 2015年4期
关键词:下骨距骨踝关节

张树 张建中包贝西 魏芳远

(首都医科大学附属北京同仁医院骨科,北京100730)

·综述·

踝关节炎的病因机制及相关研究进展

张树 张建中*包贝西 魏芳远

(首都医科大学附属北京同仁医院骨科,北京100730)

近年来,随人们对疾病的认知及诊疗水平的提升,踝关节炎已成为重要的经济卫生负担,并逐渐引起我们的关注[1-3]。据统计,全球近1%的成年人,因踝关节疼痛、活动受限等问题,长期受到困扰,并严重影响日常生活。有研究表明,晚期踝关节炎为患者带来的肢体功能障碍及精神困扰与晚期髋关节炎同样严重[4],但髋膝关节炎已引起足够重视,目前对其病因及相关机制问题已有大量研究,而对于踝关节炎的研究仍较少[5]。充分了解其病因及相关机制,对于正确选择治疗方案、确保远期疗效及减少术后并发症有重要意义。

尽管该病在病理变化、临床表现方面与其他关节的原发性关节炎有不少相似之处,但踝关节炎的发生发展机制仍有其特殊性,70%~78%的踝关节炎继发于创伤。其软骨细胞对于异常机械应力及一些炎症因子的反应,亦不同于其他关节。基于目前研究,踝关节的发生发展涉及机体内细胞和分子水平,复杂的生物力学和生物化学变化。充分了解其病因及相关机制,对于选择正确的治疗方案及发现新的诊疗手段有重要意义。本文就踝关节炎可能的发生发展机制作一综述。

1 解剖

踝关节由胫、腓骨下端与距骨滑车构成,胫骨远端膨大部分是内踝,被一条纵行的沟分为前、后两个小丘。内踝的内表面由透明软骨覆盖,并于距骨内侧形成关节。在腓骨远端也有同样的结构,并于距骨外侧形成外踝。关节囊附着于各关节面周围,其前后壁薄而松弛,两侧有韧带加强。

内侧三角韧分为深浅两层,浅层为扩大、扇形、连续走行的结构,起自内踝的前丘部,其没有明显的束样结构,可根据止点分为三部分。前部连接于舟骨内侧,与弹簧韧带上内侧部分纤维相混合;中部垂直走行向下,止于跟骨的载距突;后部向后外止于距骨结节的内侧。三角韧带深层在解剖上与浅层分离,厚且短,可分为两个明显的结构:胫距前、后深层韧带。两者均位于关节内,滑膜外。前部起自前外侧丘部,止于距骨内侧。后部是整个三角韧带最强的部分,起自后丘,向后方走行,同样止于距骨内侧。三角韧带的浅深两层都具有对抗踝关节过度外翻外旋的作用,深层有最强的限制外翻的作用。

踝关节外侧韧带由距腓前韧带、跟腓韧带、距腓后韧带3部分组成。其中距腓前韧带起自外踝的前面,向前内侧走行,止于距骨颈部的外侧面,止点恰位于关节面的远端。此韧带长15~20mm,宽6~8mm,厚2mm,与踝关节前方关节囊相融合。距腓前韧带是踝外侧韧带中最弱的韧带,最常受损伤。跟腓韧带是一条圆形,长20~25mm,厚6~8mm的结构。起自外踝尖前方,其远端向下、向后延伸到腓骨肌腱深面,止于跟骨外侧的上部。此韧带位于关节外,跨过胫距及距下两个关节。跟腓韧带在踝关节极度背伸时紧张,并起着限制踝关节过度内翻的作用。距腓后韧带位置较深,自外踝后内侧至距骨结节外侧,长约3 cm,宽5mm,厚8mm。它是外侧韧带中最强的一条,在踝关节背伸时受到较大张力[6]。

由于距骨滑车前部较宽后部较窄,当关节背伸时,较宽的滑车前部嵌入关节窝内,关节较稳定;但跖屈时,踝关节可稍有外展、内收运动,故踝关节扭伤多见于跖屈情况下。

关节软骨通过其弹性对抗压力,保护软骨下骨。其中由软骨细胞产生的胶原和蛋白聚糖是软骨细胞外基质的重要组成。正常成人的软骨细胞数量基本保持在一个恒定水平,且其增殖能力随年龄增大而逐步减低。此外,生理性负重有助于维持软骨健康,随肢体的正常活动,关节腔内压力产生周期性变化,可抑制软骨的退变、血管化或骨化,并促进细胞外基质等更新[7]。

2 病因

不同于髋膝关节,踝关节很少发生原发性骨关节炎。经大量临床流行病学研究证实,外伤为踝关

节炎的常见诱因,且创伤性骨关节炎患者年龄明显小于原发性骨关节炎[5,8-11]。一项对OA患者的流行病学研究显示,其中1.6%的髋关节炎,9.8%的膝关节炎和79.5%的踝关节炎患者,既往至少有1次受累关节的外伤[12]。据Saltzman等对639名晚期踝关节炎患者(Kellgren分级3或4级)的分析,其中46例(7%)为原发性踝关节炎,76例(12%)为类风湿性关节炎,445例(70%)为创伤性踝关节炎,而踝关节的螺旋形骨折(164例)及韧带损伤(126例)为创伤性踝关节炎的常见原因[9]。反复的踝扭伤是造成创伤性踝关节炎并后足畸形的主要原因[13]。

Valderrabano等对390例晚期踝关节炎患者的研究也支持上述结论,大部分患者(78%)为创伤性踝关节炎。踝关节骨折157例,是主要病因,踝关节韧带损伤占60例。仅30例为原发性踝关节炎,其他病因所致的继发踝关节炎46例[5]。类风湿、血色病、血友病、痛风、神经性疾病、距骨缺血坏死、骨软骨损伤及感染后关节炎均可导致继发性踝关节炎(表1)[1,14]。此外,一项流行病学研究表明,肥胖为骨关节炎发生发展的独立危险因素[15]。

3 发展机制

导致踝关节炎发生发展的机制可分为以下两种:异常负重作用于正常软骨或正常应力作用于异常软骨[16]。创伤性踝关节炎正符合上述第一种情况:创伤引起关节囊、韧带及关节面的损伤,使载荷传递增大或改变关节内负重的分布,进而导致关节炎的发生发展。

关节软骨对于病理情况下的负重异常十分敏感[17],体外负重实验表明,异常负重可明显影响软骨的结构组成及其代谢活动[18]。异常负重产生的应力作用于软骨细胞,使其产生氧化应激,而氧化应激是导致软骨退变的原因之一。因此,异常负重及氧化应激的持续存在,对促进软骨退变的有着重要作用[19]。异常机械负重同时可影响软骨细胞的功能,造成其对软骨细胞外基质的合成分解代谢失衡。软骨细胞的受体经机械刺激,可产生基质降解酶、炎症细胞因子及趋化因子,并引起滑膜组织的炎症。已有大量研究证实,纤维黏连蛋白碎片(Fn-f)可通过上调基质金属蛋白酶活性并抑制蛋白聚糖合成,进一步扩大软骨的破坏[20]。此外,关节炎中周期性静水压的降低也会影响软骨的营养及代谢[7]。早期表现为聚糖蛋白丢失及Ⅱ型胶原断裂,并逐渐出现软骨水肿、弹性丧失。同时,伴随关节内软骨的一系列变化,软骨下骨出现局部增厚,硬化甚至囊变[16]。

近来,软骨下骨的作用已逐渐引起相关研究重视。在OA中,软骨下骨增厚与软骨退变几乎同时出现,并随炎症程度而进展。软骨下骨与深层软骨间通过复杂的管道结构相互联通,构成一个功能单元。在炎症环境下,骨重塑异常导致的软骨下骨硬化,极大的减弱了软骨下骨吸收应力震荡的作用,使其丧失保护关节软骨的功能。而自潮线(关节透明软骨与软骨下骨交界区)出现的新生血管和软骨钙化,也会逐步削减关节软骨的厚度。关节软骨和关

节周围骨质结构的改变,导致关节变形,并进一步引起关节软骨退变,加速骨关节炎进程。近期一项研究亦证实了,软骨下骨产生的生长因子和细胞因子在关节炎发生发展中的作用[21]。而其与关节炎的关系仍有待进一步研究证实。

表1 继发性踝关节炎的病因

4 相关因子

虽然目前对OA的发展机制尚不明确,但基于大量相关分子的研究,已知白介素-1β(IL-1β)和肿瘤坏死因子(TNF),通过促进软骨基质降解,在病程中发挥重要作用。此外,一项对创伤性踝关节炎的研究显示,20位患者的滑液中IL-1Ra,IL-6,IL-8,IL-10,IL-15及MCP-1明显高于对照组[22]。进一步探究促炎细胞因子的作用机制,对靶向治疗延缓疾病进展有深远的意义

411 IL-IL-11β和TNF TNF

IL-1β和TNF是OA中最重要的两个:IL-1β介导软骨的损伤,TNF诱发炎症级联反应。这两种细胞因子可由软骨细胞、单核细胞、成骨细胞及滑膜组织产生,并诱导一系列促进分解代谢的细胞因子产生。在OA患者的滑液、滑膜、软骨及软骨下骨均可见IL-1β和TNF表达升高[23]。这两种因子可独立或协同其他因子介导炎症反应。动物实验显示,IL-1β和TNF同时注入关节腔内对软骨造成的破坏,较单一因子更显著[24,25]。虽然IL-1β是广义上的促炎细胞因子,但敲除Il1b基因的可促进小鼠OA进展的研究结果提示,该因子在维持软骨细胞代谢稳态中的作用仍有待我们进一步探究[26]。

细胞表面存在两种IL-1β受体,IL-1RⅠ可接受信号刺激,并向胞内传导信号[27]。在OA病程中,人关节软骨细胞和滑膜纤维母细胞表达IL-1RⅠ较正常细胞明显升高[28,29]。IL-1RⅡ为诱骗受体,通过高亲和力特异性识别IL-1β,但在结构上不能进行信号转导[30]。软骨细胞和滑膜纤维母细胞产生的IL-1Ra,可竞争性结合两种受体,抑制IL-1活性,发挥抗炎作用[31,32]。

TNF同样通过结合细胞表面两种受体TNFRI(或p55)和TNFRII(或p75)呈递信号。关节软骨细胞和滑膜纤维母细胞在炎症状态下,可检测到TNFRI表达升高[36]。TNFRI在关节内组织表达占优势,但两种受体激活后,均可向胞内不同的蛋白呈递信号,并介导相应的级联反应[33-36]。

已有研究证实,IL-1β和TNF可抑制软骨细胞合成细胞外基质[37,38]。在体外实验中,IL-1β下调软骨细胞中2型胶原蛋白的表达,减少外基质中2型胶原蛋白的同源三聚体含量[39,40]。同时,IL-1β通过抑制β-1,3-葡糖醛酸基转移酶Ⅰ,限制糖胺聚糖与核心蛋白连接,降低聚蛋白聚糖的生成[41]。相似的,TNF可抑制蛋白聚糖合成,以及软骨细胞内蛋白与2型胶原的交联[37,42]。

此外,IL-1β和TNF还可刺激软骨细胞释放蛋白水解酶,其中最主要的一类为基质金属蛋白酶(MMPs):间质胶原酶(MMP-1)、基质溶解素1(MMP-3),胶原酶3(MMP-13)[43-45]。上述三种酶在软骨的退变过程中发挥着重要作用。而带有血小板凝血酶敏感蛋白样模体的解整链蛋白金属蛋白酶(a disintegrin and metalloproteinase w ith thrombospondin motifs,ADAMTS)家族成员在OA的发病过程中有更重要的作用。目前公认的聚蛋白多糖酶只有2个:ADAMTS-4[46]和ADAMTS-5[47]。牛和猪软骨经IL-1β和TNF刺激,可增加对ADAMTS-4的表达,但ADAMTS-5表达未见明显变化,该结论在一项对OA患者滑液的研究中得到进一步证实[48,49]。而Glasson等发现,小鼠ADAMTS-5基因敲除,可以抑制OA的发生和发展[47]。

4.2 IL-IL-66

人白细胞介素-6(IL-6)是一种多功能的细胞因子,它通过与靶细胞表面受体结合发挥多种生物活性:首先由活性区域与80 kDa的IL-6Rα结合,产生IL-6/IL-6Rα复合物,复合物再与gp130结合。此外,IL-6R的一种特殊形式,可溶性IL-6R(sIL-6R),分子量为50 kDa,其结合IL-6形成sIL-6R/IL-6复合体后,也可与细胞膜表面gp130结合,将信号传到胞内,通过信号转导及转录激活子-3(STAT3)和STAT1上的Src同源结构域-2(SH2)与磷酸化的酪氨酸相互作用形成同源或异源二聚体,二聚体与其结合位点分离,并在酪氨酸磷酸化后转移到核内,调节靶基因表达[50,51]。正常情况下,软骨细胞生成IL-6维持在一个较低水平,但在OA中,由于多种细胞因子及生长因子存在,如:IL-1β和TNF-β等,刺激IL-6的大量产生[52,53]。当剪切力作用于人软骨细胞时,前列腺素E(PGE2)通过上调环磷酸腺苷(cAMP),激活蛋白激酶A(PKA)、磷脂酰肌醇3-激酶(PI3K)及核因子-κB(NF-κB)信号通路,促进IL-6表达[54,55]。在对健康人及体外外周血单核细胞的研究均提示,高浓度IL-6可刺激C反应蛋白(CRP)升高[56,57]。此外,一项对OA

患者的临床研究证实,高浓度IL-6和CRP与软骨丢失有显著相关性[58]。IL-6、IL-1β及抑瘤素共同作用可上调牛或人培养基中MMP-1和MMP-13的含量[59,60]。同时,机械损伤可通过sIL-6R/IL-6复合体减少软骨细胞对2型胶原的表达,促进软骨细胞外基质退变[61,62]。

目前基于动物实验对IL-6功能的研究仍不能得出一致结论。虽然小鼠中IL-6缺陷与较低的关节内炎细胞数量及胶原诱导性关节炎发病率相关[63],但一些研究显示,关节内注入IL-6可抑制关节软骨破坏[64]。IL-6缺陷型较野生型小鼠,蛋白聚糖合成减低,软骨下骨硬化增加[65]。有证据表明,IL-6在急性期反应中起抗炎、免疫抑制的作用。因此,IL-6作为一种炎症因子,在体内具有促炎和抗炎的双重作用[66]。

软骨下骨的代谢变化,同样可影响OA的发展。由成骨细胞产生的IL-6可促进破骨细胞分化,继而吸收骨质[67]。类似于其在炎症中发挥的双重作用,当成骨细胞产生低表达IL-6及PGE2时,骨吸收增加;相反,高表达IL-6及PGE2,与骨吸收减少相关[68,69]。IL-6在OA软骨下骨的骨吸收、骨硬化及骨赘形成中均发挥重要作用。

5 踝软骨的特殊性

踝关节相对较低的关节炎发生率,及其软骨对损伤较强的耐受性,与结构功能上特殊性相关[70,71]。踝关节软骨细胞密度明显高于膝关节,因此踝软骨有较强的代谢能力,而不易出现合成分解代谢失衡[70]。近期的一些研究显示,踝关节软骨对于促进基质降解的刺激因素存在低反应[71]。在IL-1的抑制下,体外培养的踝关节软骨细胞对蛋白聚糖的合成是膝软骨的8倍[71,72]。这种低反应不仅对于于细胞因子,踝软骨细胞对于Fn-f介导基质降解的耐受性,亦明显强于膝软骨[72]。踝关节软骨对基质及细胞因子的反应,提示其在治疗上的特殊性。例如:膝关节炎中基于相关细胞因子或基质分子的治疗药物,在踝关节中很可能出现“低反应”。

在细胞外基质中,踝软骨较膝软骨含有更多的蛋白聚糖,及较少的水。生化组成上的不同,必将影响其生物力学性质。踝软骨具有较高的平衡模量及刚度,较低的透水性,因而对机械损伤有较强的抵抗能力[73,74]。

对下肢关节早期关节炎的研究中,胶原和蛋白聚糖合成的标记物在退变的踝关节内明显升高,而在膝关节中却表现为相反的趋势。这一结果提示,损伤早期踝软骨通过上调合成代谢以修复组织,而为何膝软骨没能成功实现相似功能尚不清楚。可能较为合理的解释是,早期大量基质降解产物抑制膝软骨合成代谢,而踝软骨因良好刚度,未出现明显基质碎裂[71,74]。

此外,踝软骨与膝软骨的比较形态学研究发现,两者浅表层软骨细胞的空间排列存在差异。经过对单轴关节与双轴关节的软骨组成及关节力学的比较,单轴关节,如踝关节,软骨细胞成对排列,而膝关节中软骨细胞成串排列。目前尚不清楚这种成对排列的形态是长期应力的结果,还是其在维持软骨稳态中有特殊的功能。进一步探究其意义将有助于骨软骨移植治疗中对移植物的选择[75]。

6 骨软骨移植

骨软骨移植通过取自股骨远端非负重区或同种异体骨软骨组织,修复踝关节炎中局灶性软骨损伤[76-78]。中期随访研究显示,术后5年患者可获得明显的疼痛缓解及踝部功能改善[79],但该技术在理论上存在局限,仍需长期证据支持。

移植物与周围组织交界处产生的异常压力变化,将影响软骨基质代谢平衡。因组织间细胞及基质组成不同而产生的代谢压力上升,在一定程度上限制移植物与周围正常软骨的整合与重塑,影响软骨的减震功能。距骨软骨厚约1.5mm[80],而股骨远端软骨厚度2~6mm[81],髁间软骨厚度最大。因此,膝软骨用于踝关节炎治疗时,由于厚度及软骨结构层次的不匹配而出现上述问题。在这种异常应力及代谢压力的作用下,远期移植物交界处出现纤维软骨瘢痕,并逐渐影响软骨的正常功能。

软骨移植术后,软骨下骨同样受到异常应力累及。在山羊的自体骨软骨移植模型中证实[82],愈合中软骨下骨出现硬化伴局部负重增高。尽管目前尚无移植术后出现关节软骨退变的大规模研究证据,仍不能除外异常应力对远期软骨代谢及功能的影响。根据既往软骨下骨小梁方向影响骨愈合的研究结果[83],移植物的软骨下骨在远期的软骨健康中有重要作用。

尽管骨软骨移植术后,可能存在诸多问题。目前相关临床及组织学研究结论仍是乐观的[79]。通过对比自体及异体骨软骨移植的疗效,我们将进一步了解移植术后踝关节内力学及分子水平变化。

综上所述,目前踝关节炎的发病率虽不及髋关

节或膝关节,但其临床意义仍不容忽视。踝关节炎患者多存在生活质量低,严重的下肢活动受限等问题[4,84]。不同于其他OA,踝关节炎多继发于骨折、韧带损伤等外伤[4,8]。其发生发展机制不同于其他关节炎,软骨及其下骨、相关炎症因子和趋化因子在病程中的作用,仍有待进一步探究。

[1]Buckwalter JA,Martin JA.Osteoarthritis.Adv D rug Deliv Rev,2006,58(2):150-167.

[2]Buckwalter JA,Saltzman C,Brown T.The impactof osteoarthritis:imp lications for research.Clin Orthop Relat Res, 2004,(427 Suppl):S6-S15.

[3]Reginster JY.The prevalence and burden of arthritis.Rheumatology(Oxford),2002,41(4):3-6.

[4]Glazebrook M,Daniels T,Younger A,et al.Comparison of health-related quality of life between patients w ith endstage ankle and hip arthrosis.JBone Joint Surg Am,2008, 90(3):499-505.

[5]Valderrabano V,Horisberger M,Russell I,etal.Etiology of ankle osteoarthritis.Clin Orthop Relat Res,2009,467(7): 1800-1806.

[6]张建中.足踝外科学精要.北京:北京大学医学出版社, 2013:7-8.

[7]Carter DR,Beaupre GS,Wong M,et al.Themechanobiology of articular cartilage development and degeneration. Clin Orthop RelatRes,2004,(427Suppl):S69-S77.

[8]Saltzman CL,Salamon M L,B lanchard GM,et al.Epidem iology of ankle arthritis:report of a consecutive series of 639 patients from a tertiary orthopaedic center.Iowa Orthop J,2005,25:44-46.

[9]Thomas RH,Daniels TR.Ankle arthritis.JBone Joint Surg Am,2003,5A(5):923-936.

[10]Daniels T,Thomas R.Etiology and biomechanics of ankle arthritis.FootAnk le Clin,2008,13(3):341-352.

[11]Hintermann B.Totalanklearthroplasty:historical overview, current concepts and future perspectives.Wien(Austria), New York:Springer,2005:5-9.

[12]Brown TD,Johnston RC,Saltzman CL,etal.Posttraumatic osteoarthritis:a first estimate of incidence,prevalence,and burden of disease.JOrthop Trauma,2006,20(10):739-744.

[13]Valderrabano V,Hintermann B,Horisberger M,etal.Ligamentous posttraumatic ankle osteoarthritis.Am J Sports Med,2006,34(4):612-620.

[14]Buckwalter JA,Mankin HJ.Articular cartilage:degeneration and osteoarthritis,repair,regeneration,and transplantation.Instr Course Lect,1998,47:489.

[15]Frey C,Zamora J.The effects of obesity on orthopaedic footand ankle pathology.FootAnkle Int,2007,28(9):996-999.

[16]Goldring MB,Goldring SR.Osteoarthritis.JCell Physiol, 2007,213(3):626-634.

[17]Roos EM.Joint injury causes knee osteoarthritis in young adults.Curr Opin Rheumatol,2005,17(2):195-200.

[18]Furman BD,Olson SA,Guilak F.The developmentof posttraumatic arthritis after articular fracture.JOrthop Trauma, 2006,20(10):719-725.

[19]Martin JA,Brown TD,Heiner AD,et al.Chondrocyte senescence,joint loading and osteoarthritis.Clin Orthop RelatRes,2004,(427 Suppl):S96-S103.

[20]Dang Y,Cole AA,Homandberg GA.Comparison of the catabolic effects of fibronectin fragments in human knee and ankle cartilages.Osteoarthritis Cartilage,2003,11(7):538-547.

[21]Lajeunesse D,Reboul P.Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling.Curr Opin Rheumatol,2003,15(5):628-633.

[22]Adams SB Jr,NettlesDL,Jones LC,etal.Inflammatory cytokines and cellularmetabolites as synovial fluid biomarkersof posttraumatic ankle arthritis.FootAnk le Int,2014,35 (12):1241-1249.

[23]Martel-Pelletier J,Lajeunesse D,Pelletier JP.Arthritis and A llied Conditions:A Textbook of Rheumatology.15th ed. Baltimore(USA):Lippincott Williams&Wilkins,2005:2199-2226.

[24]Page Thomas DP,King B,Stephens T,et al.In vivo studies of cartilage regeneration after damage induced by catabolin/ interleukin-1.Ann Rheum Dis,1991,50(2):75-80.

[25]Henderson B,Pettipher ER.Arthritogenic actions of recombinant IL-1 and tumour necrosis factor alpha in the rabbit: evidence for synergistic interactions between cytokines in vivo.Clin Exp Immunol,1989,75(2):306-310.

[26]Clements KM,Price JS,Chambers MG,et al.Gene deletion of either interleukin-1beta,interleukin-1beta-converting enzyme,inducible nitric oxide synthase,or stromelysin 1 accelerates the developmentof knee osteoarthritis inm ice after surgical transection of themedial collateral ligament and partial medial meniscectomy.Arthritis Rheum,2003, 48:3452-3463.

[27]Arend WP.Interleukin-1 receptor antagonist.Adv Immunol, 1993,54:167-227.

[28]M artel-Pelletier J,M cCollum R,DiBattista J,et al.The interleukin-1 receptor in normal and osteoarthritic human articular chondrocytes.Identification as the type I receptor and analysis of binding kinetics and biologic function.ArthritisRheum,1992,35(5):530-540.

[29]Sadouk MB,Pelletier JP,Tardif G,etal.Human synovial fibroblasts coexpress IL-1 receptor type Iand type IImRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab Invest,1995,73(3):347-355.

[30]Colotta F,Dower SK,Sims JE,etal.The type II'decoy'receptor:a novel regulatory pathway for interleukin 1.Immunol Today,1994,15(12):562-566.

[31]Palmer G,Guerne PA,M ezin F,etal.Production of interleukin-1 receptor antagonistby human articular chondrocytes. ArthritisRes,2002,4(3):226-231.

[32]Seitz M,Loetscher P,Dewald B,et al.Production of interleukin-1 receptorantagonist,inflammatory chemotactic proteins,and prostaglandin E by rheumatoid and osteoarthritic synoviocytes--regulation by IFN-gamma and IL-4.JImmunol,1994,152(4):2060-2065.

[33]Alaaeddine N,DiBattista JA,Pelletier JP,etal.Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55(TNF-R55)thatmediatesbiological activation by TNF-alpha.JRheumatol,1997,24(10): 1985-1994.

[34]Naume B,Shalaby R,Lesslauer W,et al.Involvement of the 55-and 75-kDa tumor necrosis factor receptors in the generation of lymphokine-activated killer cell activity and proliferation of natural killer cells.J Immunol,1991,146 (9):3045-3048.

[35]Hohmann HP,BrockhausM,Baeuerle PA,etal.Expression of the types A and B tumor necrosis factor(TNF)receptors is independently regulated,and both receptorsmediate activation of the transcription factor NF-kappa B.TNF alpha is not needed for induction of a biological effect via TNF receptors.JBiol Chem,1990,265(36):22409-22417.

[36]Westacott CI,Atkins RM,Dieppe PA,etal.Tumor necrosis factorαreceptor expression on chondrocytes isolated from human articular cartilage.JRheumatol,1994,21(9):1710-1715.

[37]Saklatvala J.Tumournecrosis factorαstimulates resorption and inhibits synthesis of proteoglycan in cartilage.Nature, 1986,322(6079):547-549.

[38]Goldring MB,Fukuo K,Birkhead JR,etal.Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes.JCell Biochem,1994,54(1):85-99.

[39]Chadjichristos C,Ghayor C,Kypriotou M,et al.Sp1 and Sp3 transcription factorsmediate interleukin-1 beta downregulation of human type IIcollagen gene expression in articular chondrocytes.JBiol Chem,2003,278(41):39762-39772.

[40]Shakibaei M,Schulze-Tanzil G,John T,et al.Curcum in protects human chondrocytes from IL-l1beta-induced inhibition of collagen type IIand beta1-integrin expression and activation of caspase-3:an immunomorphological study. Ann Anat,2005,187(5-6):487-497.

[41]Gouze JN,Bordji K,Gulberti S,et al.Interleukin-1beta down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis:influence of glucosam ine on interleukin-1beta-mediated effects in rat chondrocytes.Arthritis Rheum,2001,44(2): 351-360.

[42]Séguin CA,Bernier SM.TNFalpha suppresses link protein and type II collagen expression in chondrocytes:Role of MEK1/2 and NF-kappaB signaling pathways.JCell Physiol,2003,197(3):356-369.

[43]Mengshol JA,VincentiMP,Coon CI,etal.Interleukin-1 induction of collagenase 3(matrix metalloproteinase 13) gene expression in chondrocytes requires p38,c-Jun N-term inalkinase,and nuclear factor kappaB:differential regulation of collagenase 1 and collagenase 3.Arthritis Rheum, 2000,43(4):801-811.

[44]Lefebvre V,Peeters-Joris C,Vaes G.Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase,tissue inhibitor ofmetalloproteinasesand collagen types in differentiated and dedifferentiated articular chondrocytes.Biochim Biophys Acta,1990,1052(3):366-378.

[45]Reboul P,Pelletier JP,Tardif G,etal.The new collagenase, collagenase-3,isexpressed and synthesized by human chondrocytes but not by synoviocytes.A role in osteoarthritis.J Clin Invest,1996,97(9):2011-2019.

[46]Glasson SS,Askew R,Sheppard B,et al.Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout m ice.ArthritisRheum,2004,50(8):2547-2558.

[47]Glasson SS,Askew R,Sheppard B,etal.Deletion of active ADAMTS5 prevents cartilage degradation in amurinemodelof osteoarthritis.Nature,2005,434(7033):644-648.

[48]Tortorella MD1,MalfaitAM,Deccico C,et al.The role of ADAM-TS4(aggrecanase-1)and ADAM-TS5(aggrecanase-2)in amodelof cartilage degradation.Osteoarthritis Cartilage,2001,9(6):539-552.

[49]Bondeson J,Wainw rightSD,Lauder S,etal.The roleof synovial macrophages and macrophage-produced cytokines in driving aggrecanases,matrixmetalloproteinases,and other destructive and inflammatory responses in osteoarthritis. A rthritisRes Ther,2006,8(6):R187.

[50]Wegenka UM,Buschmann J,Lütticken C,et al.Acutephase response factor,a nuclear factor binding to acutephase response elements,is rapidly activated by interleukin-6 at the posttranslational level.Mol Cell Biol,1993,13(1): 276-288.

[51]Zhong Z,Wen Z,Darnell JE Jr.Stat3:a STAT fam ilymemberactivated by tyrosine phosphorylation in response to epidermal grow th factor and interleukin-6.Science,1994,264 (5155):95-98.

[52]Guerne PA,Carson DA,Lotz M.IL-6 production by human articular chondrocytes.Modulation of its synthesis by cytokines,grow th factors,and hormones in vitro.J Immunol, 1990,144(2):499-505.

[53]Bender S,Haubeck HD,Van de Leur E,etal.Interleukin-1 beta induces synthesis and secretion of interleukin-6 in human chondrocytes.FEBSLett,1990,263(2):321-324.

[54]Wang P,Zhu F,Konstantopoulos K.Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A-and phosphatidy linositol 3-kinasedependent NF-kappaB activation.Am JPhysiol Cell Physiol,2010,298(6):C1445-C1456.

[55]Wang P,Zhu F,Lee NH,et al.Shear-induced interleukin-6 synthesis in chondrocytes:roles of E prostanoid(EP)2 and EP3 in cAMP/protein kinase A-and PI3-K/Akt-dependent NF-kappaB activation.JBiol Chem,2010,285(32):24793-24804.

[56]Steensberg A,Fischer CP,Keller C,et al.IL-6 enhances plasma IL-1ra,IL-10,and cortisol in humans.Am JPhysiol EndocrinolMetab,2003,285(2):E433-E437.

[57]Haider DG,Leuchten N,Schaller G,et al.C-reactive protein is expressed and secreted by peripheral bloodmononuclear cells.Clin Exp Immunol,2006,146(3):533-539.

[58]Pelletier JP,Raynauld JP,Caron J,et al.Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients w ith knee osteoarthritis.Ann Rheum Dis,2010,69(12):2095-2101.

[59]Cawston TE,Curry VA,Summers CA,etal.The roleof oncostatin M in animal and human connective tissue collagen turnover and its localization w ithin the rheumatoid joint.A rthritisRheum,1998,41(10):1760-1771.

[60]Rowan AD,Koshy PJ,ShingletonWD,etal.Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown.ArthritisRheum,2001,44(7):1620-1632.

[61]SuiY,Lee JH,DiM icco MA,etal.Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor alpha in immature bovineand adulthuman articular cartilage.Arthritis Rheum,2009,60(10):2985-2996.

[62]Porée B,Kypriotou M,ChadjichristosC,etal.Interleukin-6 (IL-6)and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter.JBiol Chem,2008,283(8):4850-4865.

[63]A lonzi T,Fattori E,Lazzaro D,et al.Interleukin 6 is required for the development of collagen-induced arthritis.J Exp Med,1998,187(4):461-468.

[64]van de Loo FA,Kuiper S,van Enckevort FH,etal.Interleukin-6 reduces cartilage destruction during experimental arthritis.A study in interleukin-6-deficientm ice.Am JPathol, 1997,151(1):177-191.

[65]de Hooge AS,van de Loo FA,Bennink MB,etal.Male IL-6 gene knock outmice developed more advanced osteoarthritis upon aging.Osteoarthritis Cartilage,2005,13(1):66-73.

[66]Tilg H,Dinarello CA,M ier JW.IL-6 and APPs:anti-inflammatory and immunosuppressive mediators.Immunol Today,1997,18(9):428-432.

[67]Kwan TatS,PadrinesM,Théoleyre S,etal.IL-6,RANKL, TNF-alpha/IL-1:interrelations in bone resorption pathophysiology.Cytokine Grow th Factor Rev,2004,15(1):49-60.

[68]Massicotte F,Lajeunesse D,Benderdour M,et al.Can altered production of interleukin-1beta,interleukin-6,transform ing grow th factor-beta and prostaglandin E(2)by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients.Osteoarthritis Cartilage, 2002,10(6):491-500.

[69]Kwan Tat S,Pelletier JP,Lajeunesse D,et al.The differential expression of osteoprotegerin(OPG)and receptor activator of nuclear factor kappaB ligand(RANKL)in human osteoarthritic subchondral bone osteoblasts is an indicator of themetabolic state of these disease cells.Clin Exp Rheumatol,2008,26(2):295-304.

[70]Huch K.Knee and ankle:human jointsw ith different susceptibility to osteoarthritis reveal different cartilage cellularity andmatrix synthesis in vitro.Arch Orthop Trauma Surg, 2001,121(6):301-306.

[71]Cole AA,Kuettner KE.Molecular basis for differences between human joints.CellMol Life Sci,2002,59(1):19-26.

[72]Dang Y,Cole AA,Homandberg GA.Comparison of the catabolic effects of fibronectin fragments in human knee and ankle cartilages.Osteoarthritis Cartilage,2003,11(7):538-547.

[73]Treppo S,Koepp H,Quan EC,et al.Com parison of biomechanical and biochem ical properties of cartilage from human knee and ankle pairs.JOrthop Res,2000,18(5):739-748.

[74]Cole AA,Kuettner KE.Molecular basis for differences between human joints.CellMol Life Sci,2002,59(1):19-26.

[75]Rolauffs B,Williams JM,Grodzinsky AJ,etal.Distincthorizontal patterns in the spatial organization of superficial zone chondrocytesof human joints.JStructBiol,2008,162 (2):335-344.

[76]Hangody L,K ish G,Kárpáti Z,et al.Mosaicplasty for the treatment of articular cartilage defects:application in clinicalpractice.Orthopedics,1998,21(7):751-756.

[77]Hangody L,RáthonyiGK,Duska Z,etal.Autologousosteochondral mosaicplasty.Surgical technique.J Bone Joint Surg Am,2004,86-A Suppl1:65-72.

[78]Hangody L,Vásárhelyi G,Hangody LR,et al.Autologous osteochondral grafting--technique and long-term results.Injury,2008,39Suppl1:S32-S39.

[79]Fraser EJ,Harris MC,Prado MP,et al.Autologous osteochondral transplantation for osteochondral lesions of the talus in an athletic population.Knee Surg Sports Traumatol Arthrosc,2015.[Epub ahead of print]

[80]Shepherd DE,Seedhom BB.Thickness of human articular cartilage in joints of the lower limb.Ann Rheum Dis,1999, 58(1):27-34.

[81]Kuettner KE,Cole AA.Cartilage degeneration in different human joints.Osteoarthr Cartil,2005,13(2):93-103.

[82]Lane JG,TontzWL Jr,Ball ST,et al.A morphologic,biochem ical,and biomechanical assessment of short-term effects of osteochondral autograft plug transfer in an animal model.Arthroscopy,2001,17(8):856-863.

[83]Schiff A,Li J,Inoue N,et al.Trabecular angle of the human talus is associatedw ith the level of cartilage degeneration.J MusculoskeletNeuronal Interact,2007,7(3):224-230.

[84]Segal AD,Shofer J,Hahn ME,etal.Functional lim itations associated w ith end-stage ankle arthritis.JBone Joint Surg Am,2012,94(9):777-783.

2095-9958(2015)08-0 352-07

10.3969/j.issn.2095-9958.2015.04-019

*通信作者:张建中,E-mail:trfoot@126.com

猜你喜欢
下骨距骨踝关节
X线与CT引导下骨病变穿刺活检的临床应用
软骨下骨重塑与骨关节炎综述
“胖人”健身要注意保护膝踝关节
Cross-cultural adaptation and validation of an ankle instability questionnaire for use in Chinese-speaking population
中老年大骨节病踝关节影像特征分析
骨关节炎与软骨下骨研究进展
距骨全脱位的临床研究进展
软骨下骨在骨关节炎中的病理改变及其机制
距骨全脱位治疗的研究进展
踝关节损伤的正确处置