姜海波(综述),唐金荣(审校)
(南京医科大学第一附属医院神经内科,南京 210029)
L型电压门控钙通道在神经病理性疼痛中的研究进展
姜海波△(综述),唐金荣※(审校)
(南京医科大学第一附属医院神经内科,南京 210029)
摘要:神经病理性疼痛是神经系统损伤引起的一种慢性疼痛,由于其发病机制尚未完全阐明,目前尚缺乏有效的治疗手段,因此进一步探求维持慢性病理性疼痛状态的机制至关重要。近年来研究发现,L型电压门控钙通道(VGCC)在神经病理性疼痛中起关键作用。该文将近年来L型VGCC在神经病理性疼痛中的研究进展予以综述,旨在为神经病理性疼痛的临床治疗提供参考。
关键词:神经病理性疼痛;L型电压门控钙通道;研究进展
神经病理性疼痛是由于躯体感觉神经系统的损伤或疾病而造成的疼痛[1],表现为自发性烧灼痛、触诱发痛和痛觉过敏[2]。神经病理性疼痛因发病原因多样、机制复杂、治疗效果不理想而倍受重视。研究表明,钙离子作为细胞内第二信使不仅在神经递质释放、神经元兴奋性以及基因转录等细胞功能方面发挥作用,而且还通过电压门控钙通道(voltage-gated calcium channels,VGCC)的运输参与慢性疼痛状态的维持[3-4]。因此,通过干预VGCC影响钙离子功能成为目前研究神经病理性疼痛的一大热点。近年来,VGCC与神经病理性疼痛关系的研究已较为深入[4-5],而L型VGCC在神经病理性疼痛进程中的作用尚不明确。现主要探讨L型VGCC参与神经病理性疼痛的机制。
1L型VGCC的分类、分布和影响因素
VGCC是电压门控离子通道超家族的成员,根据电生理特性,可将VGCC分为高电压激活钙通道和低电压激活钙通道;前者包括L、N、P/Q及R型钙通道,后者即T型钙通道;VGCC由α1、 α2、β、γ、δ 5种亚基构成,其中L型VGCC的4个家族成员Cav1.1、Cav1.2、Cav1.3、Cav1.4分别由α11.1(α1S)、α11.2(α1C)、α11.3(α1D)、α11.4(α1F)编码α1亚单位,Cav1.1主要分布于骨骼肌中[6];Cav1.2在心脏、平滑肌、胰腺、肾上腺和大脑中广泛表达,被认为是心脏中最重要的L型VGCC亚型;Cav1.3主要存在于大脑中,含量较Cav1.2低,胰腺、肾脏、卵巢、耳蜗以及心肌组织包括窦房结中也有分布[7];Cav1.4被认为仅存在于视网膜中[8]。Cav1通道是器官通道阻滞剂的分子靶点,是临床与实验相结合的契合点,二氢吡啶类钙离子拮抗剂可作为通道激活剂或抑制剂,别构调节控制通道的开启和关闭。L型VGCC尤其是Cav1.2亚基参与血压调节、血管舒缩、腺体分泌、基因表达,并影响学习和记忆等功能。L型VGCC可被丝氨酸/苏氨酸磷酸酶PP2A、PP2B、PP1、蛋白激酶A、蛋白激酶C、钙调蛋白、钙调蛋白激酶Ⅱ、Src激酶调节[9]。此外,肿瘤坏死因子α可能也参与L型VGCC功能的调节[10]。
2L型VGCC与神经病理性疼痛
2.1L型VGCC阻断剂的应用与神经病理性疼痛在神经病理性疼痛中,L型VGCC阻断剂的应用可减轻体内病理性疼痛。有学者发现L型VGCC阻断剂维拉帕米、地尔硫艹卓、尼莫地平可缓解L5、L6脊神经结扎神经病理性疼痛模型的触诱发痛[11-12]。
2.2L型VGCC亚型的剔除与神经病理性疼痛Fossat等[13]用肽核酸基础的抗转录治疗评估脊神经结扎的神经病理性疼痛模型中L型VGCC亚型Cav1.2在长程机械痛觉过敏中的作用,发现在L5、L6脊神经结扎的Wistar大鼠模型中,Cav1.2的表达上调并且介导细胞核内的钙离子增加,同时伴随着Cav1.2依赖的环磷腺苷反应原件结合蛋白磷酸化,进而导致环磷腺苷反应原件依赖的环加氧酶2基因转录增强,已知环加氧酶2在促炎因子的刺激下在脊髓高表达,加剧神经病理性疼痛;研究还发现,脊髓背角Cav1.2的特定剔除以及鞘内注射抗Cav1.2 小干扰RNA可逆转神经病理性相关的触诱发痛,并降低脊髓背角神经元的兴奋性和反应性。此研究证明,钙离子通过L型VGCC内流以及Cav1.2上调对神经病理性疼痛的维持有至关重要的作用。这一结果对于临床上针对L型VGCC附属亚基、相关蛋白、下游信号通路、调节基因表达等治疗神经病理性疼痛有重要意义。
2.3L型VGCC的调控基因与神经病理性疼痛Favereaux等[14]在Cav1.2钙通道的翻译水平上发现,一种单一的微小RNA(microRNAs,miRNA),miR-103在脊神经结扎的神经病理性疼痛的动物模型的剔除或过表达分别上调和下调Cav1.2 L型 VGCC的翻译水平,提示miR-103对Cav1.2 L型VGCC的调节是双向的。该研究发现在病理性疼痛动物中miR-103下调,新生小鼠miR-103的剔除导致了对疼痛高度敏化,而miR-103的鞘内应用成功地缓解了动物的疼痛,因此进一步证实miRNA是疼痛敏化维持的一个重要原因;同时表明,脊髓背角神经元上的Cav1.2 L型VGCC的上调可能是慢性病理性疼痛的一个关键机制。
2.4L型VGCC的内部结构与神经病理性疼痛
2.4.1α2δ亚基与神经病理性疼痛VGCC通道由α1、α2、β、γ、δ 5种亚基构成。α2δ由α2、δ亚基联接,两者共同对组成通道孔道的α1亚基进行辅助以调节钙内流。抗癫痫药加巴喷丁可模拟神经递质γ-氨基丁酸的作用,与α2δ亚基结合,减少钙离子内流,进而减少谷氨酸盐、去甲肾上腺素、P物质等兴奋性神经递质的释放,从而有效控制神经病理性疼痛[15]。研究表明,加巴喷丁主要与L型VGCC的α2δ亚基结合发挥作用,表明L型VGCC的α2δ亚基参与神经病理性疼痛的调节[16]。
2.4.2L型VGCC相关肽与神经病理性疼痛大量研究表明,N型VGCC与神经病理性疼痛密切相关,N型VGCC的剔除以及阻断剂的应用有效地缓解了神经病理性疼痛[17-18]。N型VGCC的亚基Cav2.2参与神经病理性疼痛的发展,脑衰反应调节蛋白2(CRMP2)广泛分布于神经系统,可促进神经元极性形成,增强Cav2.2活性[19-20]。研究表明,在背根神经节神经元,Cav2.2与脑衰反应调节蛋白2结合促进钙离子内流,促进降钙素基因肽等神经递质的释放,从而促进神经病理性疼痛的发展,阻断两者的结合以及剔除脑衰反应调节蛋白2可有效缓解神经病理性疼痛[20-21]。Wilson等[20]发现,来源于Cav1.2的肽Ct-dis与脑衰反应调节蛋白2结合干扰脑衰反应调节蛋白2与Cav2.2的相互作用,抑制去极化诱导的钙离子内流以及降钙素基因相关肽等神经递质的释放,从而减弱在啮齿类动物模型中药物诱发的慢性疼痛的触诱发痛。因此,L型VGCC通道肽通过与脑衰反应调节蛋白2的结合参与神经病理性疼痛的调节。
2.5瞬态受体电位香草酸亚型1(transient receptor potential vanilloid 1,TRPV-1)参与神经病理性疼痛TRPV-1是瞬时受体电位离子通道家族的成员,可被化学和热刺激以及辣椒素所激活,也称辣椒素受体,在伤害性热刺激和辣椒素诱导的痛觉过敏等伤害性感受中发挥至关重要的作用[22-23]。TRPV-1是阳离子选择性通道,存在于疼痛神经元的细胞膜和内质网上,被激活后导致细胞内钙离子浓度增加[24]。细胞内钙离子浓度的增加以及TRPV-1的激活使通过VGCC的电流减少,同时细胞内钙离子浓度的增加也可使VGCC失活[25-26]。正常生理情况下,钙离子通过TRPV-1和VGCC进入细胞,细胞内钙离子减少了TRPV-1对VGCC的影响,从而使TRPV-1诱导的通过VGCC的电流减少得不明显;然而病理情况尤其是细胞去极化情况下,细胞内钙离子增加TRPV-1对VGCC的影响,TRPV-1对VGCC主要起抑制作用[24,27-28]。神经病理性疼痛时在辣椒素敏感神经元,辣椒素通过激活TRPV-1,导致细胞内钙离子浓度增加,继而使通过VGCC的电流减少,表明辣椒素对VGCC电流的抑制依赖于辣椒素与其受体TRPV-1的相互作用[24]。此外,研究表明,L型VGCC拮抗剂可抑制辣椒素诱导的原发及继发性触诱发痛及痛觉过敏[29],因此,L型VGCC参与神经病理性疼痛的调节。
2.6神经肽Y(neuropeptide Y,NPY)参与神经病理性疼痛NPY广泛分布在中枢和周围神经系统,是由36个氨基酸残基组成的活性肽,通过作用于G蛋白偶联Y受体调节不同的生理进程。研究表明,NPY参与神经病理性疼痛的调节[30-31]。NPY受体是神经递质受体家族的一员,研究发现参与疼痛信息传递的正常背根神经节神经元通常表达NPY受体Y1、Y2而不表达NPY[32],NPY通过激活Y1受体增加L型钙通道电流且不改变神经元的兴奋性[33]。在坐骨神经横断诱发的神经病理性疼痛中,背根神经节神经元开始表达NPY,并且Y1受体表达水平下降,Y2受体表达水平增加,NPY通过与Y2受体作用降低N型钙通道电流继而引发钙依赖性钾电流的降低,从而增加神经元的兴奋性,同时Y1受体机制受抑制[32-33]。因此,周围神经损伤诱发的NPY表达增加可能直接抑制L型钙电流。此外,NPY受体激活后,通过抑制电压依赖性钙离子流入神经终端而抑制P物质的释放[34]。P物质广泛分布于神经系统,在神经病理性疼痛中的发生、发展中有重要作用,不仅传递伤害性信息并产生疼痛,还有镇痛作用[35-36]。P物质从背根神经节细胞释放的诱发主要依赖于L型VGCC的激活,因此亦认为NPY可能通过抑制L型钙通道电流参与疼痛的调节。
2.7非赫布长程增强参与神经病理性疼痛长程增强是突触可塑性的一种表现形式,被认为是学习和记忆的细胞学基础。脊髓背角C纤维诱发电位的长程增强被认为可诱导病理性疼痛的产生[37]。长程增强可分为赫布机制、非赫布机制。Naka等[38]认为,神经病理性疼痛与继发性痛觉过敏及脊髓表浅背角神经元内升高的细胞内钙离子浓度升高有关;在初级传入C纤维和脊髓板Ⅰ神经元中的非赫布长程增强是继发性痛觉过敏的潜在机制,在没有突触前刺激的情况下突触后去极化导致细胞内钙离子浓度升高,进而诱发长程增强。长程增强可被突触后应用硝苯地平所阻断,这提示细胞内钙离子浓度通过L型VGCC诱导突触强化,同时也表明L型VGCC可能与神经病理性疼痛密切相关。与神经病理性疼痛时L型VGCC激活引起钙离子内流,L型VGCC阻断剂可缓解疼痛的结论相反,一些研究发现,在慢性病理性疼痛模型中通过感觉神经元质膜的钙离子内流下降,同时应用L型VGCC拮抗剂不能减轻神经病理性疼痛[39-40]。
3小结
近年越来越多的研究显示,L型VGCC与神经病理性疼痛密切相关。然而,对于L型VGCC是否在神经病理性疼痛中发挥作用以及L型VGCC阻断剂能否缓解神经病理性疼痛还存在着争议。因此,今后应加强在神经病理性疼痛情况下L型VGCC蛋白基因表达的改变、电生理特性变化及与细胞因子间相互作用的研究,为临床治疗神经病理性疼痛提供研究依据。
参考文献
[1]Bennett MI,Smith BH,Torrance N,etal.Can pain can be more or less neuropathic? Comparison of symptom assessment tools with ratings of certainty by clinicians[J].Pain,2006,122(3):289-294.
[2]Clark AK,Old EA,Malcangio M.Neuropathic pain and cytokines: current perspectives[J].J Pain Res,2013,6:803-814.
[3]Miller RJ.Multiple calcium channels and neuronal function[J].Science,1987,235(4784):46-52.
[4]Shao PP,Ye F,Chakravarty PK,etal.Aminopiperidine sulfonamide Cav2.2 channel inhibitors for the treatment of chronic pain[J].J Med Chem,2012,55(22):9847-9855.
[5]Bladen C,Gadotti VM,Gunduz MG,etal.1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain[J].Pflugers Arch,2014.
[6]Tuluc P,Molenda N,Schlick B,etal.A CaV1.1 Ca2+channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle[J].Biophys J,2009,96(1):35-44.
[7]Bohn G,Moosmang S,Conrad H,etal.Expression of T-and L-type calcium channel mRNA in murine sinoatrial node[J].FEBS Lett,2000,481(1):73-76.
[8]Baumann L,Gerstner A,Zong X,etal.Functional characterization of the L-type Ca2+channel Cav1.4alpha1 from mouse retina[J].Invest Ophthalmol Vis Sci,2004,45(2):708-713.
[9]Dai S,Hall DD,Hell JW.Supramolecular assemblies and localized regulation of voltage-gated ion channels[J].Physiol Rev,2009,89(2):411-452.
[10]Hagenacker T,Czeschik JC,Schafers M,etal.Sensitization of voltage activated calcium channel currents for capsaicin in nociceptive neurons by tumor-necrosis-factor-alpha[J].Brain Res Bull,2010,81(1):157-163.
[11]Vanegas H,Schaible H.Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia[J].Pain,2000,85(1/2):9-18.
[12]Gupta M,Singh J,Sood S,etal.Mechanism of antinociceptive effect of nimodipine in experimental diabetic neuropathic pain[J].Methods Find Exp Clin Pharmacol,2003,25(1):49-52.
[13]Fossat P,Dobremez E,Bouali-Benazzouz R,etal.Knockdown of L calcium channel subtypes:differential effects in neuropathic pain[J].J Neurosci,2010,30(3):1073-1085.
[14]Favereaux A,Thoumine O,Bouali-Benazzouz R,etal.Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103:role in pain[J].EMBO J,2011,30(18):3830-3841.
[15]Quintero JE,Dooley DJ,Pomerleau F,etal.Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+alpha2delta-1 subunit[J].J Pharmacol Exp Ther,2011,338(1):240-245.
[16]Striano P,Striano S.Gabapentin:a Ca2+channel alpha 2-delta ligand far beyond epilepsy therapy[J].Drugs Today (Barc),2008,44(5):353-368.
[17]Beuckmann CT,Sinton CM,Miyamoto N,etal.N-type calcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences[J].J Neurosci,2003,23(17):6793-6797.
[18]Saegusa H,Kurihara T,Zong S,etal.Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+channel[J].EMBO J,2001,20(10):2349-2356.
[19]Arimura N,Hattori A,Kimura T,etal.CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity[J].J Neurochem,2009,111(2):380-390.
[20]Wilson SM,Schmutzler BS,Brittain JM,etal.Inhibition of transmitter release and attenuation of anti-retroviral-associated and tibial nerve injury-related painful peripheral neuropathy by novel synthetic Ca2+channel peptides[J].J Biol Chem,2012,287(42):35065-35077.
[21]Brittain JM,Duarte DB,Wilson SM,etal.Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+channel complex[J].Nat Med,2011,17(7):822-829.
[22]White JP,Cibelli M,Fidalgo AR,etalExtracellular signal-regulated kinases in pain of peripheral origin[J].Eur J Pharmacol,2011,650(1):8-17.
[23]Sousa-Valente J,Andreou AP,Urban L,etal.Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics[J].Br J Pharmacol,2014,171(10):2508-2527.
[24]Hagenacker T,Busselberg D.Modulation of intracellular calcium influences capsaicin-induced currents of TRPV-1 and voltage-activated channel currents in nociceptive neurones[J].J Peripher Nerv Syst,2007,12(4):277-284.
[25]Hagenacker T,Splettstoesser F,Greffrath W,etal.Capsaicin differentially modulates voltage-activated calcium channel currents in dorsal root ganglion neurones of rats[J].Brain Res,2005,1062(1-2):74-85.
[26]Rodriguez-Contreras A,Yamoah EN.Effects of permeant ion concentrations on the gating of L-type Ca2+channels in hair cells[J].Biophys J,2003,84(5):3457-3469.
[27]Jackson JG,Thayer SA.Mitochondrial modulation of Ca2+-induced Ca2+-release in rat sensory neurons[J].J Neurophysiol,2006,96(3):1093-1104.
[28]Vargas R,Cifuentes F,Morales MA.Differential contribution of extracellular and intracellular calcium sources to basal transmission and long-term potentiation in the sympathetic ganglion of the rat[J].Dev Neurobiol,2007,67(5):589-602.
[29]Sluka KA.Blockade of calcium channels can prevent the onset of secondary hyperalgesia and allodynia induced by intradermal injection of capsaicin in rats[J].Pain,1997,71(2):157-164.
[30]Boateng EK,Novejarque A,Pheby T,etal.Heterogeneous responses of dorsal root ganglion neurons in neuropathies induced by peripheral nerve trauma and the antiretroviral drug stavudine[J].Eur J Pain,2015,19(2):236-245.
[31]Wang D,Chen T,Gao Y,etal.Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats[J].Pharmacol Biochem Behav,2012,101(3):379-386.
[32]Wakisaka S,Kajander KC,Bennett GJ.Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy[J].Neurosci Lett,1991,124(2):200-203.
[33]Abdulla FA,Smith PA.Nerve injury increases an excitatory action of neuropeptide Y and Y2-agonists on dorsal root ganglion neu-rons[J].Neuroscience,1999,89(1):43-60.
[34]Walker MW,Ewald DA,Perney TM,etal.Neuropeptide Y modulates neuro transmitter release and Ca2+currents in rat sensory neurons[J].J Neurosci,1988,8(7):2438-2446.
[35]Chen W,McRoberts JA,Marvizon JC.μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain[J].Neuroscience,2014,267:67-82.
[36]Muto Y,Sakai A,Sakamoto A,etal.Activation of NK(1) receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain[J].Br J Pharmacol,2012,166(3):1047-1057.
[37]Liu XG,Sandkuhler J.Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage[J].Neurosci Lett,1995,191(1/2):43-46.
[38]Naka A,Gruber-Schoffnegger D,Sandkuhler J.Non-Hebbian plasticity at C-fiber synapses in rat spinal cord lamina I neurons[J].Pain,2013,154(8):1333-1342.
[39]McCallum JB,Wu HE,Tang Q,etal.Subtype-specific reduction of voltage-gated calcium current in medium-sized dorsal root ganglion neurons after painful peripheral nerve injury[J].Neuroscience,2011,179:244-255.
[40]Cui JG,Zhang X,Zhao YH,etal.Allodynia and hyperalgesia suppression by a novel analgesic in experimental neuropathic pain[J].Biochem Biophys Res Commun,2006,350(2):358-363.
The Research Progress of the L-type Calcium Channels in Neuropathic Pain
JIANGHai-bo,TANGJin-rong.
(DepartmentofNeurology,theFirstAffiliatedHospitalofNanjingMedicalUniversity,Nanjing210029,China)
Abstract:Neuropathic pain is defined as a chronic pain initiated or caused by the lesion of the nervous system.Its pathogenesis is still not totally clear.Most treatments have been empirically established,and their efficacy sometimes remains unsatisfactory.It is therefore necessary to pursue a deeper understanding of the mechanisms maintaining chronic neuropathic pain states.Recently,it is found that L-type voltage-guted calcium channels VGCC play an important role in neuropathic pain.Here is to make a review focusing on the research progress of the L-type VGCC in neuropathic pain so as to provide information for its clinical therapy.
Key words:Neuropathic pain; L-type voltage gated calcium channels; Research progress
收稿日期:2014-10-17修回日期:2014-11-30编辑:郑雪
doi:10.3969/j.issn.1006-2084.2015.07.002
中图分类号:R741
文献标识码:A
文章编号:1006-2084(2015)07-1155-04