M-矩阵逆矩阵的无穷大范数上界的进一步研究

2015-10-14 15:16:25黄卫华
湖北文理学院学报 2015年5期
关键词:上界文山对角

周 平,黄卫华



-矩阵逆矩阵的无穷大范数上界的进一步研究

周 平,黄卫华

(文山学院数学学院,云南文山663000)

根据-矩阵的性质和无穷大范数的定义,得到严格对角占优-矩阵逆矩阵的无穷大范数上界的估计式,并给出-矩阵的最小特征值下界的新估计式. 理论分析和算例表明,文章给出的两个估计式改进了现有文献的估计算法.

-矩阵;对角占优;无穷大范数;最小特征值

1 基本定义和引理

定义2[1-7]若可表示为. 其中是单位矩阵,,是非负实数且,则称为-矩阵. 特别地,当时,称为奇异矩阵;当时,称为非奇异矩阵. 记所有阶非奇异矩阵所组成的集合为.

定义3[1]设的特征值为,令,则叫做的谱;中模最大的,即称为的谱半径.

定义4[3]设,记,称为的最小特征值且.

定义5[4-7]设,且满足条件:1),;2); 3),. 存在非零元素序列,其中,则称为弱链对角占优矩阵.

定义6[5]设,任取,有,则称为-矩阵. 设,非空指标集合,为行数和列数都是的的子矩阵. 令,其中. 例如表示删去的第一行第一列得到的矩阵.

定义7[5-6]设,若,则称为严格对角占优矩阵.

引理1[5]设是´阶弱链对角占优-矩阵,则也是弱链对角占优-矩阵,且存在,,.

引理3[7]设是严格对角占优-矩阵,,则.

引理4[4]设是´阶弱链对角占优-矩阵,,,,则,,,. 其中.

(2)

由式(1)和(2),得

.

.

,.

同理,根据定义4可得到下面的推论2.

注:由此推论可知,本文定理2改进了文献[6]中定理2的估计式.

.

3 算例

[1] 陈景良, 陈向晖. 特殊矩阵[M]. 北京: 清华大学出版社, 2001: 23-87.

[2] VARGA R S. On diagonal dominance arguments for bounding ||-1||¥[J]. Linear Algebra and its applications, 1976, 14(3): 211-217.

[3] CHENG G H, HUANG T Z. An upper bound for ||-1||¥of strictly diagonally dominant M-matrices[J]. Linear Algebra and its applications, 2007, 426(2-3): 667-673.

[4] SHIVAKUMAR P N, WILLIAMS J J, YE Q, et al. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(2): 298-312.

[5] LI W. The infinity norm bound for the inverse of nonsingular diagonal dominant matrices[J]. Applications Math. Letter, 2007, 21(2): 258-263.

[6] HUANG T Z, ZHU Y. Estimation of ||-1||¥for weakly chained diagonally dominant M-matrices[J]. Linear Algebra and its applications, 2010, 432(2-3): 670-677.

[7] CHENG GUANGHUI, TAN QIN, WANG ZHUANDE. Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse[J]. Journal of Inequalities and Applications, 2013, 65(1): 1029-1035.

(责任编辑:饶 超)

Further Research on the Upper Bounds for the Infinity Norms of-matrices

ZHOU Ping, HUANG Weihua

(School of Mathematics, Wenshan University, Wenshan 663000, China)

According to the properties of-matrix and the definition of infinity norm, some upper bounds for strictly diagonally dominant-matrices are further researched, and the corresponding new results are given. At the same time new lower bounds on the smallest eigenvalue of-matrixis derived. Theory analysis and numerical figure showed that the theorem one and two in this paper improve the existing results in some cases.

-matrix; Diagonal dominance; Infinity norm; Minimum eigenvalue

O151.21

A

2095-4476(2015)05-0009-03

2014-12-15 ;

2015-01-08

云南省科技厅应用基础研究青年项目(2013FD052); 云南省教育厅项目(2013Y585); 文山学院重点学科数学建设项目(12WSXK01)

周 平(1987— ), 女, 云南永平人, 文山学院数学学院讲师.

猜你喜欢
上界文山对角
诗与象
诗与学
拟对角扩张Cuntz半群的某些性质
一个三角形角平分线不等式的上界估计
一道经典不等式的再加强
Nekrasov矩阵‖A-1‖∞的上界估计
Holocene paleoearthquake activity along the 2008 Wenchuan earthquake ruptures of the Beichuan and Pengguan faults
非奇异块α1对角占优矩阵新的实用简捷判据
Holocene paleoearthquake activity along the 2008 Wenchuan earthquake ruptures of the Beichuan and Pengguan faults
正则微分系统带权第二特征值的上界