我国地表水中药物与个人护理品污染现状及其繁殖毒性筛查

2015-10-09 05:00刘娜金小伟王业耀吕怡兵杨琦
生态毒理学报 2015年6期
关键词:毒性污染物生物

刘娜,金小伟,王业耀,,吕怡兵,杨琦

1. 中国地质大学(北京)水资源与环境学院,北京 100083 2. 中国环境监测总站,北京 100012

我国地表水中药物与个人护理品污染现状及其繁殖毒性筛查

刘娜1,金小伟2,*,王业耀1,2,吕怡兵2,杨琦1

1. 中国地质大学(北京)水资源与环境学院,北京 100083 2. 中国环境监测总站,北京 100012

根据文献报道,我国地表水中已检出至少144种药物及个人护理用品(pharmaceuticals and personal care products, PPCPs),包括抗生素、激素、其他药物、个人护理品(personal care products, PCPs) 4大类,其中检出浓度最高的达到了μg·L-1量级,在长期的污染下有可能对水生生物产生内分泌干扰效应或繁殖毒性,进而影响到整个水生生物种群的繁衍变化。因此,有必要根据我国地表水中PPCPs的污染水平,筛查出具有潜在生态风险的PPCPs。由于目前缺乏针对PPCPs类污染物的筛选体系,以国内外优先控制污染物筛选体系为基础,借鉴基于风险的欧洲兽药分级方法,利用风险指数(risk index, RI),筛选得出目前我国的地表水中有16种具有繁殖毒性的PPCPs的RI>1,包括1种抗生素,5种激素类药物,3种其他药物和7种PCPs,其中乙炔雌二醇(ethinylestradiol, EE2)的RI最高(115 730),其次是壬基酚(nonylphenol, NP)(1 796)、邻苯二甲酸二丁酯(dibutyl phthalate, DBP) (255.31),对水生态环境有较高的风险的PPCPs需进一步进行较高层次的风险评价。

药物和个人护理用品;筛查方法;繁殖毒性;地表水

药物与个人护理品(pharmaceuticals and personal care products, PPCPs)的概念最早由Christian G. Daughton于1999年提出,其中药物主要包括人类用药和兽药,如β-受体阻滞药、消炎剂、脂肪调节剂、抗生素、止痛药、镇静剂、抗癫痫药、显影剂、降压药、避孕药等,个人护理品(personal care products, PCPs)主要为香料、化妆品、遮光剂、染发剂、发胶、香皂、洗发水等[1-3]。据统计,全世界生产和使用的各类药物己达50 000余种,人用药物年消费量约为3 000万t左右,而用作兽药及添加剂的药品用量则更为庞大,全球每年仅抗生素类药物一项的使用量就超过200万t[4]。我国是药物生产和使用大国之一,药物产量占世界总产量的20%以上,生产药物活性成分1 500多种[5]。同时,我国PCPs消耗量世界排名第三,占全球消耗量的6.5%,仅次于美国(19.1%)和日本(9.4%)[6]。由于大量的生产和使用,PPCPs源源不断地进入地表水环境,形成“假性持续性”现象[7-9],其在环境中的存在已成为一个社会问题。PPCPs具有较强的生物活性,并且在一般环境条件下具有一定的持久性和生物累积性等特点,尽管环境残留水平较低,但长期暴露依然会给人类健康和生态环境带来潜在风险[10-11]。因此,本研究在充分调研我国地表水中PPCPs污染水平的基础上,综述国内外优先控制污染物筛选体系研究现状,介绍了筛选体系框架,以及筛选过程中评价因子的确定和计算方法。并借鉴基于风险的欧洲兽药分级方法,利用风险指数(risk index, RI),筛选出具有繁殖毒性的PPCPs及其潜在生态风险,以期为PPCPs管理提供理论依据及科学基础。

1 我国地表水PPCPs污染水平(Contaminate levels of PPCPs in Chinese surface waters)

据文献报道,目前在我国河流、湖泊和近岸海域等天然水环境中检出的PPCPs有144种,包括70种抗生素,33种激素类药物,20种其他类药物和21种PCPs,检出浓度为ng·L-1~μg·L-1水平。分析最近10年文献报道中各类PPCPs最高检出浓度的分布区间(见图1),抗生素类药物浓度主要分布在10~100 ng·L-1(占44%)和100~1 000 ng·L-1(占26%);激素类药物检出浓度最低,42%分布在0~10 ng·L-1之间,44%分布在10~100 ng·L-1;其他药物的最大检出浓度均大于20 ng·L-1,主要分布在100~1 000 ng·L-1水平区间(占50%);PCPs的检出浓度最高,50%的PCPs检出浓度大于1 000 ng·L-1。

图1 各类PPCPs污染水平分析Fig. 1 Contamination levels of PPCPs in Chinese surface waters

(1)抗生素类

在4类PPCPs中,抗生素的检出频率与浓度最高,6种抗生素的检出频率大于60%[12],包括磺胺甲噁唑(sulfadiazine, SD)、磺胺嘧啶(sulfamerazine, SM1)、诺氟沙星(norfloxacin, NFX)、氧氟沙星(ofloxacin, OFX)、红霉素(erythromycin, ERY)和罗红霉素(roxithromycin, ROX);11种抗生素的检出浓度达到μg·L-1水平(见表1),占总检出种类的16%,主要分布在贵阳南明河、渤海湾-海河流域和珠江流域。贵阳南明河检出浓度最高,氯霉素(chloramphenicol, CAP)、四环素(tetracycline, TC)和土霉素(oxytetracycline, OTC)的检出浓度均>3 μg·L-1,其中CAP高达19 μg·L-1[13],远远高于珠江266 ng·L-1[14];其次是渤海湾-海河流域,检出浓度最高的是NFX,为6.8 μg·L-1[15];珠江流域的抗生素检出浓度较低,ERY最高为1.54 μg·L-1[18]。

(2)激素类

我国地表水中激素类药物主要有雌激素、雄激素、孕激素和糖皮质激素4类,目前相关报道主要集中在乙炔雌二醇(ethinylestradiol, EE2)、雌酮(estrone, E1)、雌二醇(estradiol, E2)、雌三醇(estriol, E3)、己烯雌酚(diethylstilbestrol, DES)、己烷雌酚(hexoestrol, HES)等6种雌激素。分析检出浓度较高的3个地表水水体,大连排污河的污染最严重,6种雌激素均有检出,且浓度>26.9 ng·L-1,其中EE2的浓度高达3 471.9 ng·L-1[19];其次是九龙江,在检出的E1、E2、E3和DES等4种雌激素中,E1的浓度最大(321.02 ng·L-1)[20],DES浓度最小(24.9 ng·L-1)[19];Zhou等[21]在胶州湾检测了EE2、E1、E2和E3,浓度分别为94 ng·L-1、180 ng·L-1、134 ng·L-1、24 ng·L-1,污染程度相对较小。

表1我国地表水中主要PPCPs的最大浓度及分布特征

Table 1The highest concentration and distribution characteristics of main PPCPs in Chinese surface waters

分类Classification化学品号CAS.化学品名称Chemical浓度/(ng·L-1)Concentration/(ng·L-1)流域Watershed参考文献Ref.抗生素Antibiotics56-75-7氯霉素Chloramphenicol,CAP19000贵阳南明河Nanmingriver,Guiyang[13]60-54-8四环素Tetracycline,TC6800贵阳南明河Nanmingriver,Guiyang[13]70458-96-7诺氟沙星Norfloxacin,NFX6800渤海湾Bohaibay[15]82419-36-1氧氟沙星Ofloxacin,OFX5100渤海湾Bohaibay[15]80214-83-1罗红霉素Roxithromycin,ROX3700海河Haiheriver[16]79-57-2土霉素Oxytetracycline,OTC3000贵阳南明河Nanmingriver,Guiyang[13]23893-13-2脱水红霉素Erythromycin-H2O, ERY-H2O1900维多利亚港VictoriaHarbour[17]114-07-8红霉素Erythromycin,ERY1540石井河Shijingriver[18]57-68-1磺胺二甲基嘧啶Sulfamethazine,SM21390珠江Pearlriver[16]127-79-7磺胺嘧啶Sulfamerazine,SM11080石井河Shijingriver[14]57-62-5金霉素Chlorotetracycline,CTC1036九龙江Jiulongjiangriver[16]激素Hormones57-63-6乙炔雌二醇Ethynylestradiol,EE23471.9大连排污河Drainageriver,Dalian[19]53-16-7雌酮Estrone,E1321.02九龙江Jiulongjiangriver[20]50-28-2雌二醇17β-estradiol,E2134胶州湾Kiaochowbay[21]84-16-2己烷雌酚Hexoestrolum,HES103.7大连排污河Drainageriver,Dalian[19]50-27-1雌三醇Estriol,E394胶州湾Kiaochowbay[21]56-53-1己烯雌酚Diethylstilbestrol,DES28.2大连排污河Drainageriver,Dalian[19]其他药物Otherdrugs69-72-7水杨酸Salicylicacid,SALA14736珠江Pearlriver[24]73334-07-3碘普罗胺Iopromide,IOP1439珠江Pearlriver[25]58560-75-1布洛芬Ibuprofen,IBU1417珠江Pearlriver[26]298-46-4卡马西平Carbamazepine,CMP1090长江Yangtzeriver[27]53-86-1吲哚美辛Indomethacin,IND979长江Yangtzeriver[28]15307-86-5双氯芬酸Diclofenac,DIC843长江Yangtzeriver[29]58-08-2咖啡因Caffeine,CAF824黄浦江Huangpuriver[29]644-62-2甲氯芬那酸Meclofenamicacid,MECA679长江Yangtzeriver[28]22204-53-1萘普生Naproxen,NAP328珠江Pearlriver[26]882-09-7氯贝酸Clofibricacid,CLOA248珠江Pearlriver[26]

对于另外3类激素,侯丽萍等[22]检测了广东四会邓村河的10种雄激素和孕激素,结果显示,1,4-雄烯二酮、反式雄酮、雄酮的最大浓度分别为30.46 ng·L-1、18.93 ng·L-1、12.05 ng·L-1,其他均小于10 ng·L-1;谭丽超等[23]检测了南京市地表水中7种糖皮质类激素,检出浓度为2.88~60.76 ng·L-1。

(3) 其他药物类

我国地表水中检出的其他药物主要是消炎止痛药、抗惊厥药、降压药和降血脂药。在检出浓度最高的10种药物中,报道最多的是布洛芬(ibuprofen, IBU)、卡马西平(carbamazepine, CMP)、双氯芬酸(diclofenac, DIC)、萘普生(naproxen, NAP)和氯贝酸(clofibric acid, CLOA),检出频率为30%~60%[12]。分析其他类药物的地域分布,珠江和长江流域(包括其支流黄浦江)污染最严重,分别有5种药物检出,但珠江的污染程度明显大于长江。其中水杨酸(SALA)的检出浓度最高(14.736 μ g·L-1)[24],远远高于排名第二的碘普罗胺(IOP)(1.439 μg·L-1)[25]。

(4) PCPs类

PCPs中报道最多的是具有雌激素效应的壬基酚(nonylphenol, NP)和邻苯二甲酸酯类(phthalic acid esters, PAEs),其次是三氯生(triclosan, TCS)和三氯卡班(triclocarban, TCC)。分析污染水平达到μg·L-1的10种PCPs(见表1),有6种属于PAEs,其中邻苯二甲酸二丁酯(dibutyl phthalate, DBP)的检出浓度最高,为5.6168 μg·L-1[30],邻苯二甲酸二(2-乙基己基)酯(di 2-ethylhexyl phthalate, DEHP)、邻苯二甲酸二甲酯(dimethyl phthalate, DMP)、邻苯二甲酸二乙酯(diethyl phthalate, DEP)和邻苯二甲酸二正辛酯(di-n-octyl phthalate, DOP)等4种PAEs的检出浓度均大于100 μg·L-1;NP在武汉东湖的检出浓度为179.6 μg·L-1[31],远远高于其他地区的检出水平(九龙江1.688 μg·L-1[20]);对羟基苯甲酸丙酯(propylparaben, PP)、对羟基苯甲酸甲酯(methylparaben, MP)和TCS在珠江的检出浓度最高。此外,TCC在珠江支流石井河检出浓度最高(88 ng·L-1[18]),麝香类化学品在海河的检出浓度最高,为26.7~34.6 ng·L-1[33]。

2 PPCPs筛选体系研究现状(Research status on screening system of PPCPs)

由于水环境中的PPCPs种类繁多,各种PPCPs的理化性质及分子结构均不相同,在水环境中的浓度分布及迁移转化过程也有很大差别,导致其生态风险也有所差异。为了正确评估PPCPs对水生态安全性的影响,首先需要建立一套有毒有害PPCPs筛查方法。

2.1筛选体系概况

近年来,欧美国家发展了一些针对环境中潜在有毒有害的化学物质以及兽药的筛选方法[36]。Bu等[37]分析总结了最近20年国外各国政府及科研组研发的27种优先污染物筛选体系,根据使用目的,将筛选体系分为3类:第一类,通过筛选体系得到优先控制污染物名单,作为政府管理依据,如Hansen等[38]开发的EURAM;第二类,设定筛选条件,对目标污染物进行分级或排名,为开展下一步工作奠定基础,如Kool等[39]开发的基于环境风险的欧洲兽药分级方法和Mitchell等[40]开发的用于美国五大湖的污染物筛查的SCRAM;第三类,直接用来评价化学品对环境的影响或用于指导生命周期评价,如美国环保局(US EPA)开发的RSEI。

由于评价目的和筛选标准不同,各筛选体系之间区别较大,但筛选体系框架大致相同,主要分为4个步骤[37]:①根据商业生产和使用信息确定待筛选的化学品清单集;②确定测试终点和评价因子;③赋值计算;④根据计算结果对目标污染物进行排序或分级,取分值或级别较高的作为优先控制污染物。其中最关键的是评价因子的选择和赋值计算。

2.2筛选体系关键技术

(1)评价因子

优先控制污染物筛选主要考虑化学品本身的毒性和环境暴露浓度,此外还要根据需要考虑其持久存在性和生物累积性,如半衰期(T1/2)、自然降解能力和生物富集系数(bioconcentration factor, BCF)。

毒性数据一般来自实验室测定和数据库查询,根据“可靠性”和“相关性”原则进行选择。传统的生物毒性测试终点包括生存、生长和繁殖等,用半致死浓度(median lethal concentration, LC50)、半效应浓度(median effectl concentration, EC50)、最低观察效应浓度(lowest observed effect concentration, LOEC)和无观察效应浓度(no observed effect concentration, NOEC)等评价化学品对生物体暴露的危害。根据试验暴露时间,分为急性毒性和慢性毒性,用急性毒性的数据来评价短期瞬时暴露效应,用慢性毒性数据评价长期持续暴露效应,如果慢性毒性数据缺乏也可以用急性毒性数据除以一个安全因子产生慢性基准值。由于急性毒性试验周期短、成本低,目前关于PPCPs对区域水生态环境效应的报道多集中于水生生物的急性毒性[41-42]。

非传统的测试终点包括内分泌干扰、酶活性的诱导/抑制效应、应激蛋白诱导效应,以及DNA和RNA水平的变化等。由于传统的毒性测试方法耗时长、花费巨大,且因暴露剂量差异和动物种属差异可能导致较大误差,近年来国外将这些新的毒性测试方法用于化学品筛选,如高通量筛选技术(HTS)和有害结局路径(AOP)[43-44]。HTS是以分子水平和细胞水平的实验方法为基础建立的药物筛选技术体系,可以在同一时间内对数以千、万计的样品进行检测[43];AOP是Ankley等[44]提出的一个概念框架,用以描述一个分子起始事件(MIE)与生物不同组织结构层次(细胞、器官、机体、群体)出现的毒性效应之间的相互联系,从而进行危害度评定[45-46]。

环境暴露指污染物在环境中的浓度或某一特定受体的暴露剂量[47],一般用环境暴露浓度(environmental exposure concentration, EEC)来表示。在污染物筛选过程中,环境暴露浓度优先使用实测数据,当缺乏实测数据时,使用假设估算或模型预测的方法计算环境预测浓度(predicted environmental concentration, PEC)。PEC一般根据药物的产量、排泄率和污水厂中药物去除率进行估算[48],该方法简单易行,但准确度较低。实测数据准确度高,更接近实际状况,缺点是检测费用高,而且有些情况下无法进行实测。随着检测技术的提高,实测数据的获取越来越容易,例如,以多残留检测方法为基础,Bruchet等[49]建立了内分泌干扰物和PPCPs筛选方法,钟文珏等[50]建立了酚类化合物筛选方法。

(2) 计算方法

筛选体系的计算方法主要有叠置指数法和商值法,此外还有根据数学模型开发的筛选软件,如RSEI[37]。

叠置指数法首先根据评价因子的数据范围确定等级,对实际数据进行分级或赋分;然后根据评价因子的重要性确定其权重,最重要的因子指定最大的权;最后计算总分,总分越大风险越大。目前,各筛选体系尚未对评价因子形成统一的分级方式和赋值权重。例如,对于BCF的分级方式,SCRAM根据BCF的大小进行1~5分赋分[40],RICH将BCF分为高(≥5 000)、中(100~5 000)、低(<100)3个等级[51];对于评价因子的权重,SCRAM将所有评价因子的分数直接相加,得到综合分数[52-55];王朋华等[48]认为药物持久存在性( SP)和药物毒性( SH)是较重要的因子,将其权重系数设为4,而药物预测含量( SC)的权重系数设为2,总分 S = 2 SC+ 4 SP+ 4 SH。

商值法又称比率法,是使用最普遍、最广泛的风险表征方法。计算方法是将EEC(或PEC)与毒性指标值相比较,商值在某一数值范围内为有风险,小于该数值则为无风险。欧洲兽药分级方法将PEC与最低效应剂量(TDlow)相比,计算风险指数RI,然后把233种兽药的风险分为高(RI>250)、中(50~250)、低(RI≤50)3个等级[39];Victoria等[56]根据PEC与EC50的对比,从65种抗癌药物中筛选出15种比值大于1的优先控制药物。

3 繁殖毒性PPCPs筛查(Screening of PPCPs with reproductive toxicity)

由于PPCPs具有较强的生物活性,部分PPCPs不仅对水生生物造成个体死亡,在低剂量长期污染下还有可能对其产生内分泌干扰效应和繁殖毒性效应,进而影响到整个水生生物种群的繁衍及变化[57-61]。美国加州政府环境健康危害评估委员会制定的安全饮用水和毒性强制执行法案(第65号提案)2014年公布的910种致癌或繁殖毒性化学品清单中,有303种具有繁殖毒性,其中65%以上是PPCPs。研究表明,人工合成雌激素在浓度仅为0.2 ng·L-1的低剂量下就会干扰鱼类正常的内分泌,并引起雄性鱼的卵黄蛋白原(vitellogenin, VTG)增加,出现明显的雌性化[58];多环麝香对河蚌的生长和繁殖具有一定程度的抑制作用,并且还可通过江豚胎盘转移至胎儿体内[59, 62];环境激素药物来曲唑、它莫昔芬在低剂量下就能够对青鳉鱼的繁殖和早期发育产生明显的影响[60-61]。Jin等[62]比较水生生物不同测试终点,包括生存、生长、生物化学和分子生物学、繁殖对NP的敏感性差异,结果表明,基于繁殖损伤的结果最为敏感,推导的预测无观察效应浓度PNEC值最低(0.12 μg·L-1)。因此,以繁殖毒性数据为基础进行筛选,将有助于进一步研究PPCPs对水生生物的繁殖损伤以及种群影响,为此类污染物的风险评估提供科学依据。

3.1筛查方法

根据是否考虑环境暴露浓度,筛选体系分为基于风险的(risk-based)筛选体系和基于危害性的(hazard-based)筛选体系。环境风险是污染物毒性和环境暴露的综合作用结果,因此,繁殖毒性PPCPs筛选使用基于风险的筛选体系。由于PPCPs的BCF不大,除了布洛芬(14 000~49 000)、安定(1~64 700)和萘普生(500~2 300),其余均小于2 000[64-66],根据欧盟REACH法规对具有持久性、生物蓄积性和毒性的物质(PBTs)的鉴别判定标准[67],不属于持久性污染物。因此,繁殖毒性PPCPs初步筛选可以借鉴基于风险的欧洲兽药分级方法,以RI为依据对我国地表水检出的PPCPs进行筛查,不考虑生物累积性和环境持久性等评价因子。

3.2受试物种

由于不同类群生物对不同化学物的毒性敏感性存在很大的差异,因此受试物种的选择非常重要。关于PPCPs对水生生物毒性的报道很多,为了准确评价PPCPs对整个水生生态系统的影响,应针对不同种类的PPCPs选择最敏感生物类群。研究发现,对于抗生素类药物,藻类最敏感,其次是大型溞、鱼类[68];对于激素类药物,鱼类比无脊椎动物更为敏感[69]。

为了使筛查结果具有可比性,同类PPCPs尽可能选择同一敏感物种[70]。例如,当鱼类为最敏感物种时,选择国际通用模式鱼类中的青鳉鱼作为受试物种,该种鱼已经被OECD认定为评价内分泌干扰类化合物的标准受试物种[71],具有非常丰富的毒性数据库,可以保证数据的可靠性。当缺乏该受试物种毒性数据时,使用同一生物类群的物种,比如用斑马鱼或虹鳟鱼替代青鳉鱼。

3.3测试指标

传统的繁殖毒性评价指标有多代效应、受精率、产卵量、孵化率和子代畸形率。另外,性腺指数(gonadosomatic index, GSI)和VTG水平也常作为生物标记物来评估污染物对鱼类繁殖系统的潜在危害[72],但是对于这些标记物的使用需要防止假阴性现象[73](机能响应与生物标记物响应不相关)或假阳性现象[74](生物标记物响应未伴随相应的机能响应)的出现。Alistair等[75]提出的20个关于PPCPs管理需要优先研究的重要问题之一,就是如何把组织和分子水平的毒性效应转化成生存、生长和繁殖等传统生物毒性测试终点。由于筛选水平的评价只是对风险进行比较粗略的估计,可以忽略各评价指标之间的区别,在US EPA的ECOTOX数据库中选择敏感物种长时间暴露条件下繁殖类指标的NOEC作为评价终点[70,75],当未搜索到NOEC时,用LOEC来替代。

表2PPCPs繁殖毒性筛查结果

Table 2Screening results and risk index of PPCPs with reproductive toxicity

化学品号CAS.No.化学品名称Chemical环境浓度/(ng·L-1)EEC/(ng·L-1)受试物种Testspecies测试指标Measurement评估终点Endpoint浓度/(ng·L-1)Concentration/(ng·L-1)暴露时间/dDuration/dRI参考文献Ref.57-63-6乙炔雌二醇Ethynylestradiol,EE23471.9[19]青鳉鱼Oryziaslatipes雌性化FemaleLOEC0.03100115730[77]9016-45-9壬基酚Nonylphenol,NP179600[31]青鳉鱼Oryziaslatipes卵黄蛋白原VTGLOEC100200~2301796[78]84-74-2邻苯二甲酸二丁酯Dibutylphthalate,DBP5616800[30]九孔鲍Haliotisdiversicolorsupertexta胚胎发育embryoNOEC220004255.31[79]117-81-7邻苯二甲酸二(2-乙基己基)酯Di(2-ethylhexyl)phthalate,DEHP1752650[30]九孔鲍Haliotisdiversicolorsupertexta胚胎发育EmbryoNOEC21000483.46[79]53-16-7雌酮Estrone,E1321.02[20]青鳉鱼Oryziaslatipes雌性化FemaleNOEC811040.13[77]50-28-2雌二醇17β-estradiol,E2134[21]青鳉鱼Oryziaslatipes卵黄蛋白原VTGLOEC5200~23026.8[78]84-66-2邻苯二甲酸二乙酯Diethylphthalate,DEP381420[30]九孔鲍Haliotisdiversicolorsupertexta胚胎发育EmbryoNOEC20000419.07[79]15687-27-1布洛芬Ibuprofen,IBU1417[26]青鳉鱼Oryziaslatipes孵化率HatchabilityNOEC10013214.17[80]58-22-0睾酮Testosterone,TTR3.2[81]静水椎实螺Greatpondsnail产卵量EggNOEC0.32110.67[82]131-11-3邻苯二甲酸二甲酯Dimethylphthalate,DMP173420[32]九孔鲍Haliotisdiversicolorsupertexta胚胎发育EmbryoNOEC2000048.67[79]117-84-0邻苯二甲酸二正辛酯Di-n-octylphthalate,DOP114760[34]九孔鲍Haliotisdiversicolorsupertexta胚胎发育EmbryoNOEC2000045.74[79]70458-96-7诺氟沙星Norfloxacin,NFX6800[15]蓝藻Blue-greenalgae生长GrowthNOEC160064.25[83]3380-34-5三氯生Triclosan,TCS1023[26]菲律宾蛤仔Ruditapesphilippinarum卵黄蛋白原VTGNOEC30073.41[84]15307-86-5双氯芬酸Diclofenac,DIC843[28]虹鳟鱼Rainbowtrout组织TissueLOEC460211.83[85]298-46-4卡马西平Carbamazepine,CMP675[27]大型溞Daphniamagna繁殖ReproductionNOEC50061.35[86]50-27-1雌三醇Estriol,E394[23]青鳉鱼Oryziaslatipes雌性化FemaleNOEC751101.25[77]

3.4筛查结果及分析

为了不漏掉任何有问题的化学品,筛选水平的评价结果通常比较保守[76],应以文献报道中最大检出浓度作为 EEC 。根据公式(1),计算得到RI,若比值大于1,说明风险较高,可能对水生生物产生潜在的繁殖损伤,比值越大毒性越高;若比值小于1,说明风险较小。

RI = EEC / NOEC

(1)

计算结果表明,有16种PPCPs的RI>1(见表2),包括1种抗生素,5种激素类药物,3种其他药物和7种PCPs。美国加州第65号提案清单将其中的EE2、DBP、DEHP和CMP标注为繁殖毒性化学品,E1、E2和睾酮为致癌化学品。

由表2可知,尽管抗生素类药物在我国地表水检出率较高,但由于其生物敏感性较低[68],在我国目前地表水污染水平下,只有NFX对蓝藻生长产生抑制作用,对地表水生态环境影响不大。水生生物对激素类药物的敏感性最高,EE2的LOEC值仅为0.03 ng·L-1[77],而我国地表水中最大浓度为3 471.9 ng·L-1[19],RI值为115 730,对青鳉鱼的繁殖影响极大;睾酮对净水椎实螺的产卵量NOEC值为0.3 ng·L-1[82],因此尽管地表水检出浓度仅为3.2 ng·L-1[81],仍然具有一定的生态风险。3种其他药物为IBU、DIC和CMP,其中IBU的RI较高(14.17),在一定程度上影响珠江中鱼类的种群繁殖。PCPs中NP是典型的内分泌干扰物,暴露浓度为100 ng·L-1时就对青鳉鱼的VTG产生影响[78],又由于其较高的检出浓度,RI高达1 796,危害程度仅次于EE2;5种PAEs的NOEC值差别不大,对水生生物的影响程度主要取决于地表水残留浓度,RI值范围为5.74~255.31。综上所述,激素类药物的NOEC明显较低,而PCPs的检出浓度相对较高。因此,在目前我国地表水污染水平下,二者对水生态环境的风险最大。

4 展望

(1) 国外对污染物筛查体系的研究已经相对成熟,并成功应用于实际工作中,而我国的污染物筛查方法比较简单,对筛查体系研究较少,尤其缺乏对繁殖毒性及内分泌干扰物类污染物筛查体系的研究。因此,有必要建立完善符合我国区域特征的繁殖毒性PPCPs筛查体系,为PPCPs类污染物的生态风险评价提供科学基础和技术支撑。

(2) 目前针对PPCPs的研究工作主要集中在测试其环境浓度水平与研究环境行为方面,关于其环境效应及生态风险的研究仍然处于起步阶段,尤其是针对低剂量长期暴露下的繁殖毒性效应和种群动态变化。现有的PPCPs毒性数据来自国外毒性数据库以及不同文献,受试物种和实验终值差别较大,因此,应通过不同营养级区域特征水生生物(鱼,大型溞,浮游植物)的毒性表征,真实反映区域水环境中PPCPs的环境效应和生态风险。

(3) 针对PPCPs特别是具有繁殖毒性及内分泌干扰效应PPCPs污染物的风险管理,目前还没有成熟的理论体系。近年来一些研究报道采用环境归趋预测、PBT分数、Stockholm模型等方法进行PPCPs的危害评估和定性风险评估。总体来说,现有PPCPs的筛选以及评价的方法都是基于污染物本身的环境预测浓度或数据库常规毒性作为依据,很少考虑到其对生物种群动态以及区域整体环境产生的危害及生态风险。如何科学地使用常规实验数据以及这些非传统的测试终点预测生物种群发生变化的无效应浓度水平,建立生物个体水平污染物剂量-效应关系和种群水平污染物剂量-效应关系,发展由个体水平定量评估到种群水平效应评价的生态风险评估方法需要我们进一步的研究。

通讯作者简介:金小伟(1985―),男,博士,中国环境监测总站高级工程师,主要从事生态毒理以及生态风险评价的研究,已发表论文30余篇。

[1]胡洪营, 王超, 郭美婷. 药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J]. 生态环境, 2005, 14(6): 947-952

[2]Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change [J]. Environmental Health Perspectives, 1999, 107(6): 907-938

[3]安靖, 周启星. 药品及个人护理用品(PPCPs)的污染来源、环境残留及生态毒[J]. 生态学杂志, 2009, 28(9): 1878-1890

An J, Zhou Q X. Pollution sources, environmental residues, and ecological toxicity of pharmaceuticals and personal care products (PPCPs): A review [J]. Chinese Journal of Ecology, 2009, 28(9): 1878-1890 (in Chinese)

[4]喻峥嵘. 东江下游某市饮用水中药品和个人护理用品分布及净化[D]. 北京: 清华大学, 2011: 1-2

Yu Z R. Distribution and purification of pharmaceutical and personal care products (PPCPs) in drinking water [D]. Beijing: Tsinghua University, 2011: 1-2 (in Chinese)

[5]Zhou H, Wu C, Huang X, et al. Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China [J]. Water Environment Research, 2010, 82(11): 2239-2248

[6]China Industry Research Net (CIRN). Personal care product market development analysis [R]. China Industry Research Net, 2012

[7]Ternes T A, Meisenheimer M, McDowel D, et al. Removal of pharmaceuticals during drinking water treatment [J]. Environmental Science & Technology, 2002, 36: 3855-3863

[8]Sun J, Luo Q, Wang D H, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China [J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140

[9]Santos L H, Araujo A N, Fachini A, et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment [J]. Journal of Hazardous Materials, 2010, 175(1-3): 45-95

[10]Sun L W, Zha J M, Spear P A, et al. Toxicity of the aromatase inhibitor letrozole to Japanese medaka ( Oryzias latipes ) eggs, larvae and breeding adults [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 145(4): 533-541

[11]Sun L W, Zha J M, Spear P A, et al. Tamoxifen effects on the early life stages and reproduction of Japanese medaka ( Oryzias latipes ) [J]. Environmental Toxicology and Pharmacology, 2007, 24(1): 23-29

[12]王丹, 隋倩, 赵文涛, 等. 中国地表水环境中药物和个人护理品的研究进展[J]. 科学通报, 2014, 59(9): 743-751

Wang D, Sui Q, Zhao W T, et al. Pharmaceutical and personal care products in the surface water of China: A review [J]. Chinese Science Bulletin, 2014, 59(9): 743-751 (in Chinese)

[13]Liu H, Zhang G P, Liu C Q, et al. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang city, China [J]. Journal of Environmental Monitoring, 2009, 11: 1199-1205

[14]Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Environmental Science and Health, 2011, 46: 272-280

[15]Zou S, Xu W, Zhang R, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159: 2913-2920

[16]Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe river basin, China [J]. Environmental Science & Technology, 2011, 45: 1827-1833

[17]Minh T B, Leung H W, Loi I H, et al. Richardson, antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour [J]. Marine Pollution Bulletin, 2009, 58: 1052-1062

[18]Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Journal of Environmental Science and Health, Part B, 2011, 46: 272-280

[19]高会, 那广水, 方小丹, 等. 大连地区环境水体中六种雌激素的残留特征及随季节变化情况[J]. 环境化学, 2011, 30(12): 2041-2046

Gao H, Na G S, Fang X D, et al. Distribution and seasonal variation of six estrogens in environmental water of Dalian [J]. Environmental Chemistry, 2011, 30(12): 2041-2046 (in Chinese)

[20]Zhang X, Zhang D D, Zhang H, et al. Occurrence, distribution, and seasonal variation of estrogenic compounds and antibiotic residues in Jiulongjiang River, South China [J]. Environmental Science and Pollution Research, 2012, 19: 1392-1404

[21]Zhou X, Lian Z R, Wang J T, et al. Distribution of estrogens along Licun river in Qingdao China [J]. Procedia Environmental Sciences, 2011, 10: 1876-1880

[22]侯丽萍, 刘珊, 方展强, 等. 广东四会邓村河水体中雌/雄激素物质的含量及分布[J]. 农业环境科学学报, 2013, 32(1): 135-140

Hou L P, Liu S, Fang Z Q, et al. Concentrations and distribution of estrogenic and androgenic chemicals in water collected from Dengcun river, Sihui city, Guangdong province [J]. Journal of Agro-Environment Science, 2013, 32(1): 135-140 (in Chinese)

[23]谭丽超. 水环境中类固醇激素的污染特征及健康风险评价研究[D]. 南京: 南京农业大学, 2011: 49-59

Tan L C. Environmental pollution investigations and environmental risk assessment studies of steroid hormones [D]. Nanjing: Nanjing Agricultural University, 2011: 49-58 (in Chinese)

[24]Zhao J L, Ying G G, Liu Y S, et al. Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China [J]. Environmental Toxicology and Chemistry, 2010, 29: 1377-1384

[25]Yu Y, Huang Q, Wang Z, et al. Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China [J]. Journal of Environmental Monitoring, 2011, 13: 871-878

[26]Peng X, Yu Y, Tang C, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban river water of the Pearl River Delta, South China [J]. Science of the Total Environment, 2008, 397: 158-166

[27]Zhou X F, Dai C M, Zhang Y L, et al. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China [J]. Environmental Monitoring and Assessment, 2011, 173: 45-53

[28]Yang Y, Fu J, Peng H, et al. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone [J]. Journal of Hazardous Materials, 2011, 190: 588-596

[29]王丹, 隋倩, 吕树光, 等. 黄浦江流域典型药物和个人护理品的含量及分布特征[J]. 中国环境科学, 2014, 34(7): 1897-1904

Wang D, Sui Q, Lv S G, et al. Concentrations and distribution of selected pharmaceuticals and personal care products in Huangpu River [J]. China Environmental Science, 2014, 34(7): 1897-1904 (in Chinese)

[30]陆继龙, 郝立波, 王春珍, 等. 第二松花江中下游水体邻苯二甲酸酯分布特征[J]. 环境科学与技术, 2007, 21(30): 35-38

[31]Fang X Y, Ying X, Gerd P, et al. Nonylphenol, bisphenol-A and DDTs in lake Donghu, China [J]. Fresenius Environmental Bulletin, 2005, 14(3): 173-180

[32]Shen Y Y, Xu Q, Yin X Y, et al. Determination and distribution features of phthalate esters in Xuanwu Lake [J]. Journal of Southeast University: Natural Science Edition, 2010, 40(6): 1337-1341

[33]Hu Z, Shi Y, Cai Y, et al. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China [J]. Chemosphere, 2011, 84: 1630-1635

[34]王军良, 徐超, 庄晓伟, 等. 水中邻苯二甲酸酯污染现状及高级氧化降解技术研究[J]. 工业水处理, 2011, 31(4): 5-13

[35]王春, 李晓东, 史玉坤, 等. 南通市地表水中邻苯二甲酸酯类污染状况研究[J]. 南通大学学报(医学版), 2007, 27(3): 167-170

Wang C, Li X D, Shi Y K, et al. Study on pollution condition of phthalate esters in surface water in Nantong city [J]. Jouna1 of Nantong University (Medical Sciences), 2007, 27(3): 167-170 (in Chinese)

[36]Capleton A C, Courage C, Rumsby P, et al. Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile [J]. Toxicology Letters, 2006, 163(3): 213- 2231

[37]Bu Q W, Wang D H, Wang Z J. Review of screening systems for prioritizing chemical substances [J]. Critical Reviews in Environmental Science and Technology, 2013, 43(10): 1011-1041

[38]Hansen B G,Haelst A G, Leeuwen K, et al. Priority setting for existing chemicals: European Union risk ranking method [J]. Environmental Toxicology and Chemistry, 1999, 18: 772-779

[39]Kools S A E, Boxall A B A, Moltmann J F, et al. A ranking of European veterinary medicines based on environmental risks [J]. Integrated Environmental Assessment and Management, 2008, 4(4): 399-408

[40]Mitchell R R, Summer C L, Blonde S A, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes: Resulting chemical scores and rankings [J]. Human and Ecological Risk Assessment, 2002, 8: 530-537

[41]Nassef M, Matsumoto S, Seki M, et al. Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish ( Oryzias latipes ) [J]. Chemosphere, 2010, 80(9): 1095-1100

[42]Kim J W, Ishibashi H, Yamauchi R, et al. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean ( Thamnocephalus platyurus ) and fish ( Oryzias latipes ) [J]. Toxicological Sciences, 2009, 34(2): 227-232

[43]Ivanov I, Schaab C, Planitzer S, et al. DNA microarray technology and antimicrobial drug discovery [J]. Pharmacogenomics, 2000, 1(2): 169 -178

[44]Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment [J]. Environmental Toxicology and Chemistry, 2010, 29: 730-741

[45]Caldwell D J, Mastrocco F. An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research [J]. Chemosphere, 2014, 115: 4-12

[46]彭双清. 危险度评定中AOP的概念以及关于其中文译名的思考[J]. 中国药理学与毒理学杂志, 2013, 27(1): 305

[47]Arnot J, Mackay D. Policies for chemical hazard and risk priority setting: Can persistence, bioaccumulation, toxicity, and quantity information be combined [J]. Environment Science and &Technology, 2008, 42(13): 4648-4654

[48]王朋华, 袁涛, 李荣, 等. 水环境中优先控制药物筛选体系的建立与应用[J]. 中国环境监测, 2008, 24(4): 7-13

Wang P H, Yuan T, Li R, et al. Screening the priority control pharmaceuticals in the aquatic environment [J]. Environment and Monitoring in China, 2008, 24(4): 7-13 (in Chinese)

[49]Bruchet A, Prompsy C, Filippi G, et al. A broad spectrum analytical scheme for the screening of endocrine disruptors (EDs), pharmaceuticals and personal care products in wastewaters and natural waters [J]. Water Science and Technology, 2002, 46: 86-97

[50]Zhong W, Wang D, Xu X, et al. Screening level ecological risk assessment for phenols in surface water of the Taihu lake [J]. Chemosphere, 2010, 80 (9): 998-1005

[51]Baun A, Eriksson E, Ledin A, et al. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater [J]. Science of the Total Environment, 2006, 370(1): 29-38

[52]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American great lakes. Part I: Structure of the scoring and ranking system [J]. Environmental Science and Pollution Research, 2000, 7(1): 52-61

[53]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Part II: Bioaccumulation potential and persistence [J]. Environmental Science and Pollution Research, 2000, 7(2): 116-121

[54]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Part III: Acute and subchronic or chronic toxicity [J]. Environmental Science and Pollution Research, 2000, 7(3): 176-184

[55]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Part IV: Results from representative chemicals, sensitivity analysis, and discriminatory power [J]. Environmental Science and Pollution Research, 2000, 7(4): 220-224

[56]Victoria B, Crispin H, Neville L, et al. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes [J]. Science of the Total Environment, 2014, 3: 159-170

[57]Ishibashi H, Matsumura N, Hirano M, et al.Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin [J]. Aquatic Toxicology, 2004, 67(2): 167-179

[58]Zha J M, Sun L W, Spear P A, et al. Comparison of ethinylestradiol and nonylphenol effects on reproduction of Chinese rare minnows ( Gobiocypris rarus ) [J]. Ecotoxicology and Environmental Safety, 2008, 71(2) : 390-399

[59]Gooding M P, Newton T J, Bartsch M R, et al. Toxicity of synthetic musks to early life stages of the freshwater mussel Lampsilis cardium [J]. Archives of Environmental Contamination and Toxicology, 2006, 51(4): 549-558

[60]United States Environmental Protection Agency (US EPA). National recommended water quality criteria [S]. Washington DC: US EPA, 2006

[61]Ackermann G E, Schwaiger J, Negele R D, et al. Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout ( Oncorhynchus mykiss ) [J]. Aquatic Toxicology, 2002, 60(3): 203-221

[62]Jin X W, Wang Y Y, Jin W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness [J]. Environmental Science & Technology, 2014, 48: 1256-1262

[63]Nakma H. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters [J]. Environmental Science & Technology, 2005, 39(10): 3430-3434

[64]Brozinski J M, Lahti M, Oikari A, et al. Identification and dose dependency of ibuprofen biliary metabolites in rainbow trout [J]. Chemosphere, 2013, 93: 1789-1795

[65]Maruya K A, Vidal D E, Bay S M, et al. Organic contaminants of emerging concern in sediments and flatfish collected near outfalls discharging treated wastewater effluent to the southern California Bight [J]. Environmental Toxicology and Chemistry, 2012, 31: 2683-2688

[66]Brozinski J M, Lahti M, Oikari A, et al. Detection of naproxen and its metabolites in fish bile following intraperitoneal and aqueous exposure [J]. Environmental Science and Pollution Research International, 2011, 18: 811-818

[67]REACH法规对CMR/PBT物质的控制与企业应对策略[OL]. http://reach.Chem info.gov. cn/hottopic/show.aspx?xh= 566

[68]Ji K, Kim S, Han S, et al. Risk assessment of chlortetracycline,oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: Are the current environmental concentrations safe? [J]. Ecotoxicology, 2012, 21(7): 2031-2050

[69]Segner H, Navas J, Schfers C, et al. Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo [J]. Ecotoxicology and Environmental Safety, 2003, 54(3): 315-322

[70]金小伟, 王业耀, 王子健, 等. 淡水水生态基准方法学研究: 繁殖/生殖毒性类化合物水生态基准探讨[J]. 生态毒理学报, 2015, 10(1): 31-39

Jin X W, Wang Y Y, Wang Z J, et al. Methodologies for deriving aquatic life criteria (ACL): Discussion of ACL for chemicals causing reproductive toxicity [J]. Asian Joumal of Ecoloxicology, 2015, 10(1): 31-39 (in Chinese)

[71]Ankley G T, Johnson R D. Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals [J]. Ilar Journal,2004, 45(4): 469-483

[72]Bosker T, Munkiitrick K R, Maclatchy D L. Challenges and opportunities with the use of biomarkers to predict reproductive impairment in fishes exposed to endocrine disrupting substances [J]. Aquatic Toxicology, 2010, 100(1): 9-16

[73]Hutchinson T H, Ankley G T, Segner H, et al. Screening and testing for endocrine disruption in fish-biomarkers as “signposts”, not “traffic lights” in risk assessment [J]. Environmental Health Perspectives, 2006, 114: 106-114

[74]Hartung T. Toxicology for the twenty-first century [J]. Nature, 2009, 460(7252): 208-212

[75]Jin X, Wang Y, Jin W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness [J]. Environmental Science & Technology, 2014, 48(2): 1256-1262

[76]周军英, 程燕. 农药生态风险评价研究进展[J]. 生态与农村环境学报, 2009, 25(4): 95-99

Zhou J Y, Cheng Y. Advancement in the study of pesticides ecological risk assessment [J]. Journal of Ecology and Rural Environment, 2009, 25(4): 95-99 (in Chinese)

[77]Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka ( Oryzias latipes ) [J]. Environmental Toxicology and Chemistry, 2001, 20(2): 297-308

[78]Tabata A, Kashiwada S, Ohnishi Y, et al. Estrogenic influences of estradiol-17beta, p-nonylphenol and bis-phenol-A on Japanese medaka ( Oryzias latipes ) at detected environmental concentrations [J]. Water Science and Technology, 2001, 43(2): 109-116

[79]Liu Y, Guan Y, Yang Z, et al.Toxicity of seven phthalate esters to embryonic development of the abalone Haliotis diversicolor supertexta [J]. Ecotoxicology, 2009, 18(3): 293-303

[80]Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka ( Oryzias latipes ) and freshwater cladocerans Daphnia magna and Moina macrocopa [J]. Aquatic Toxicology, 2010, 98(3): 256-264

[81]王玲. 环境中类固醇类内分泌干扰物的检测技术及其降解行为研究[D]. 济南: 山东大学, 2007: 68

Wang L. Studies on the new analytical technology for steroids and its degradation behavior in the environment [D]. Jinan: Shandong University, 2007: 68 (in Chinese)

[82]Giusti A, Ducrot V, Joaquim-Justo C. Testosterone levels and fecundity in the hermaphroditic aquatic snail Lymnaea stagnalis exposed to testosterone and endocrine disruptors [J]. Environmental Toxicology and Chemistry, 2013, 32(8): 1740-1745

[83]Ando T, Nagase H, Eguchi K. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents [J]. Environmental Toxicology and Chemistry, 2007, 26(4): 601-606

[84]Matozzo V, Formenti A, Donadello G. A multi-biomarker approach to assess effects of triclosan in the clam Ruditapes philippinarum [J]. Marine Environmental Research, 2012, 74: 40-46

[85]Mehinto A C, Hill E M, Tyler C R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout ( Oncorhynchus mykiss ) [J]. Environmental Science & Technology, 2010, 44(6): 2176-2182

[86]Dietrich S, Ploessl F, Bracher F. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna - A multigenerational study [J]. Chemosphere, 2010, 79(1): 60-66

Pharmaceuticals and Personal Care Products (PPCPs) Caused Reproductive Toxicity in Surface Water of China: A Review

Liu Na1, Jin Xiaowei2, *, Wang Yeyao1, 2, Lv Yibing2, Yang Qi1

1. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China 2. China National Environmental Monitoring Center, Beijing100012, China

23 March 2015accepted 10 June 2015

It was reported that 144 pharmaceuticals and personal care products (PPCPs) have been detected in Chinese surface waters, including hormones, antibiotics, other pharmaceuticals and personal care products (PCPs).The highest exposure concentration which can be detected even reached at μ g·L-1level, which may lead to endocrine disruption or reproductive toxicity, and then affect the population dynamics of aquatic organisms. In present study, the potential ecological risks of PPCPs were screened and ranked using risk index (RI) methods based on reproductive fitness in Chinese surface water. The result showed that 16 kinds of PPCPs have a high risk which with RI>1 in Chinese surface waters, including 5 hormones, 1 antibiotic, 3 other drugs and 7 PCPs, in which ethinylestradiol (EE2) with the highest RI of 115 730, followed by nonylphenol (NP) with RI of 1 796, and dibutyl phthalate (DBP) with RI of 255.31. High tiered ecological risk assessments are needed to get further evaluation for those PPCPs.

PPCPs; screening system; reproductive toxicity; Chinese surface waters

国家自然科学青年基金(21307165);国家水体污染控制与治理科技重大专项(2013ZX07502001);环境模拟与污染控制国家重点联合实验室(中国科学院生态环境研究中心)开放基金(14K02ESPCR)

刘娜 (1985-),女,博士研究生,研究方向为生态毒理及风险评价研究,E-mail:liuna_1231@163.com

Corresponding author), E-mail: jxw85@126.com

10.7524/AJE.1673-5897.20150323014

2015-03-23录用日期:2015-06-10

1673-5897(2015)6-001-12

X171.5

A

刘娜, 金小伟, 王业耀, 等. 我国地表水中药物与个人护理品污染现状及其繁殖毒性筛查[J]. 生态毒理学报,2015, 10(6): 1-12

Liu N, Jin X W, Wang Y Y, et al. Pharmaceuticals and personal care products (PPCPS) caused reproductive toxicity in surface water of China: A review [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 1-12 (in Chinese)

猜你喜欢
毒性污染物生物
生物多样性
生物多样性
上上生物
菌株出马让畜禽污染物变废为宝
《新污染物治理》专刊征稿启事
《新污染物治理》专刊征稿启事
你能找出污染物吗?
第12话 完美生物
动物之最——毒性谁最强
苦豆子总碱对PC12细胞的毒性