双重逆极限空间上移位映射的Li-Yorkeτ混沌

2015-06-15 07:15:22
周口师范学院学报 2015年5期
关键词:数集科学出版社双重

罗 飞

(重庆师范大学 数学学院,重庆401331)

1 双重逆极限空间的定义

以下定义请参考文献[1]和[2].

设X非空紧致度量空间,f:X→X,g:X→X都是连续映射且满足f◦g=g◦f,记集合显然(其中Xi,j=X,∀i,j∈Ζ).以后把X 中的点都简记为 (xi,j).在上引入度量:

σf◦σg是上的同胚映射,并称之为由f◦g诱导出来的上的移位映射.由于f◦g=g◦f,故同样有σf◦σg=σg◦σf.

2 Li-Yorkeτ混沌

设f,g为X上的连续映射,且f◦g=g◦f,设τ≥0,存在不可数集C⊂X,称f◦g是Li-Yorke τ意义下混沌,如果f◦g满足:

则称这样的集C为f◦g的混沌集,f◦g是Li-Yorkeτ混沌的.

定理1 设f,g为紧致度量空间上的连续满射,且f◦g=g◦f,则σf◦σg是Li-Yorkeτ意义下混沌的当且仅当f◦g是Li-Yorkeτ意义下混沌的.

证 首先设f◦g是Li-Yorkeτ意义下混沌的,C⊂X是f◦g的一个不可数混沌集,并且xi,j,yi,j∈C,xi,j≠yi,j,对τ≥0有

对于每一个xi,j∈C取定)中的一个元素记为,令由C 是不可数集可知T也是不可数集.

下面证明T为σf◦σg的一个混沌集.

又因为

其中M>0为紧致度量空间X上的直径.则当k,h>K时

另一方面,假设σf◦σg是Li-Yorkeτ意义下混沌的,T是σf◦σg的一个混沌集.

对于 ∀xi,j,yi,j∈C,对任意的使

不失一般性可以进一步假设,si<ni<si+1<ni+1,ti<mi<ti+1<mi+1.对于每一个i>0,有

(ki,hi)= max{(n,m):n<ni,m <mi且则有si≤ki<ni,ti≤hi<mi.

因此C是f◦g的一个混沌集.

[1]顾荣宝.逆极限空间上移位映射的拓扑熵与混沌[J].武汉大学学报:自然科学版,1995,41(1):22-26.

[2]蒋达锋.双重逆极限空间上的动力性质[D].苏州大学,2005.

[3]周作岭.符号动力系统[M].上海:上海科技教育出版社,1997.

[4]陈绥阳,褚蕾蕾.动力系统基础及其方法[M].北京:科学出版社,2002.

[5]张筑生.微分动力系统原理[M].北京:科学出版社,2003.

猜你喜欢
数集科学出版社双重
自然与成长的双重变奏
不可数集上定义的可数补空间的拓扑性质
化解“双重目标”之困
中国外汇(2019年7期)2019-07-13 05:44:56
“自然数与有理数一样多”的数学证明
数学大世界(2018年2期)2018-01-27 00:13:17
《色谱》获2015 年度科学出版社“期刊出版质量优秀奖”
色谱(2015年6期)2015-04-08 06:03:51
“双重打击”致恐龙灭绝
发明与创新(2015年1期)2015-02-27 10:38:26
第二数类Z 的新模型与退火法
河南科技(2013年18期)2013-08-15 00:48:29
浅谈两类常见集合的区别
军事医学科学出版社图书目录
科学出版社物理类重点书推荐
物理(2009年7期)2009-09-05 07:22:30