刘会芳
[摘要]在分析我国农资物流发展现状的基础上,主要从农资需求片区划分和配送中心选址两个方面对农资物流网络进行优化。运用K-means聚类法将农资需求点划分为若干个需求片区;然后基于成本最小的原则,建立农资物流网络配送中心选址模型,利用重心法确定各个需求片区中农资配送中心的位置;最后通过仿真实验进行检验。
[关键词]农资物流;网络优化;配送中心选址;聚类分析
[DOI]1013939/jcnkizgsc201533024
1农资物流的发展现状
农资是农用物资的简称,一般是指在农业生产过程中用以改变和影响劳动对象的物质资料和物质条件,如农业运输机械、生产及加工机械、农药、种子、化肥、农膜等。
现代农资物流是依托于信息技术和供应链管理方法的一种物流管理活动,它能够保证农业生产顺利进行、保障农村经济发展供给和补充农业生产所需的生产资料。农资物流的发展直接关系到我国总体经济运行效率和运行质量。
近年来,国家对关乎8亿农民的“三农”问题十分重视,国务院及相关部门对化肥等农业生产资料的物流配送及公益性服务都给予了相关的指导和政策的倾斜。但总体来看,我国对农资物流体系的研究起步较晚,农资物流网络还存在着配送网点数量较少、覆盖面较小、库点分布不科学等问题,使得农资资源的配置效率较低。因此,探索农资物流网络的优化方法是很有必要的。
2基于K-means聚类的农资需求片区划分
K-means算法是典型的基于距离的聚类算法,它采用距离作为相似性的评价指标。
假设一定的区域内共有n个农资需求点,需求点k(k=1, 2,, n)的农资需求量用Dk表示。假定各农资配送中心的设计容量Mj相同,为定值M。由此可得最佳聚类数K:
K=[SX(][DD(]n[]k=1[DD)]Dk[]M[SX)](1)
在确定最佳聚类数后,可通过以下的聚类算法将农资需求点划分为K个农资需求片区:
步骤1:对于容量为n的农资需求样本点{x1, x2,, xn},随机选取K个样本点作为初始聚类中心{z1, z2,, zK};
步骤2:计算余下每个农资需求样本点xi到各个初始聚类中心的欧式距离,找到离样本距离最近的聚类中心zv,并将它分配到zv所表明的类内;
步骤3:用平均法计算重新分类后的各类中心;
步骤4:计算D=[DD(]n[]i=1[DD)][minr=1,, kd(xi, zr)2];
步骤5:如D收敛,且新的凝聚点与旧的凝聚点重合,则return(z1, z2,, zK, D)并终止此算法。否则转至步骤2。
3农资物流网络配送中心选址
作为农资物流网络重要的物流节点,配送中心的选址和功能配置会直接影响物流作业的效率。如果物流节点安排的不合理,直接会造成农资物流系统内物流作业的不流畅、停顿甚至瘫痪。在进行农资物流网络需求片区划分后,本文主要讨论农资物流网络配送中心的选址问题。
31建立数学模型
311确定目标
以从配送中心到农资需求点的总配送费用最小为目标,建立农资物流网络配送中心选址优化模型。
312确定约束条件
农资物流网络配送中心选址模型的约束条件主要包括:配送中心的数目、容量、配送能力应满足要求;总配送里程有一定的限制;变量满足非负要求。
313建立模型
基于以上的分析,建立了如下模型:
(1)假设条件
单位的归一化处理:设定一个虚拟的单位使配送单位归一化,这个单位是质量和体积的统一体,以两者中较大的一个为主。
基于路况的假设:本文不对国道、省道和乡村水泥路的路况加以区分,假设农资的运输成本只与运输的农资产品量和运输距离有关。
(2)参数说明
5结论
农资物流的发展直接关系到我国总体经济运行效率和运行质量。本文从农资物流网络需求片区的划分和农资物流网络配送中心的选址两个方面对现代农资物流网络进行了优化。本文的研究成果可为农资物流企业制定物流发展战略提供有益的参考和借鉴,为相关部门制定物流发展政策提供参考。
参考文献:
[1]杨杰,姚莉秀数据挖掘技术及其应用[M].上海:上海交通大学出版社,2011:171-196.
[2]傅德胜,周辰基于密度的改进K均值算法与实现[J].计算机应用,2011,31(2):432-434.
[3]刘飞驰,邹小梅,陈泽我国农资物流发展中存在的问题与对策分析[J].中国农资,2010(8):46-47.
[4]Tsai, MC, Wen, CH, Chen, CS, Demand choices of high-tech industry for logistics services providers-an empirical case of an offshore science park in Taiwan[J].Industrial Marketing Management, 2007:617-626.
[5]Hatefi, SM, Jolai, F, Torabi, SA, et al, A credibility-constrained programming for reliable forward-reverse logistics network design under uncertainty and facility disruptions [J].International Journal of Computer Integrated Manufacturing, 2015:664-678.