基于权重设限模型的DEA流程评估问题研究

2015-05-30 10:48师苑军崔怡郭传社
科技创新导报 2015年7期
关键词:数据包络分析层次分析法

师苑军 崔怡 郭传社

摘 要:针对业务流程重组(BPR)中的流程评估需要同时考虑多个模糊的和量化的因素的问题,文章提出了一种对数据包络分析(DEA)权重设限的流程评估模型。该模型首先应用AHP对各项指标权重进行主观分析,然后将分析结果通过DEA的权重设限模型集成到业务流程相对有效性计算中去。案例研究表明,这种方法能够有效的从众多候选流程中选择出符合公司发展战略的重要流程。

关键词:业务流程重组 流程评估 数据包络分析 层次分析法 权重设限模型

中图分类号:F273/F279.21 文献标识码:A 文章编号:1674-098X(2015)03(a)-0038-02

当今世界已经进入到知识经济的时代,以信息技术的应用、经济全球化、消费者需求多样化、网络技术为时代特征的知识经济环境,使得传统的制造企业面临着更多的机遇与挑战。在这种情况下,将先进的信息技术和业务流程重组BPR管理思想综合应用于制造业,以期达到提高制造企业竞争力的目的,是发展制造业的一种新思路。BPR强调以业务流程为改造对象和中心,对现有的业务流程进行根本的再思考和彻底的再设计,以期在目前衡量企业绩效的关键指标上,获得巨大的改善。从执行过程可以看出,企业业务流程的评估是实施企业业务流程重组的重要内容和环节,它能够解决多方案的择优问题。

该文提出了一种综合了数据包络分析DEA和层次分析法(AHP)两种方法的流程评估模型。通过采用DEA权重设限模型将AHP对权重的评估结果集成到DEA业务流程相对有效性的计算中来,从而实现在对业务流程进行客观评估的同时,能够融合进管理者对各项指标权重的主观喜好。案例研究表明,这种方法能够有效的从众多候选流程中选择出符合公司发展战略的重要的流程。

1 AHP-DEA流程评估模型

1.1 DEA基本模型(CCR)

DEA用来评估一系列同性质决策单元(DMUs)的相关有效性,在本文中,DMUs可以是若干个候选的业务流程。假定有n个候选流程,记为DMUi,i=1,2,…,n。有m个输入指标,其指标集为I={1,2,…,m}和s个输出指标,指标集R={1,2,…,s}。表示第i种输入指标的权重,i=1,…,m;表示第r种输出指标的权重,r=1,…,s。

这n个评价单元的输入输出指标数据如下:

评价单元:DMU1,DMU2,…,DMUn

输入指标:x1,x2,…,xn

输出指标:y1,y2,…,yn

其中xj=(x1j,x2j,…,xmj)T, yj=(y1j,y2j,…,ysj)T,xj和yj已知,分别为评价单元DMUj的输入、输出指标数据,可以根据流程历史资料或者流程仿真得到。

,为变量,对应于一组权重系数,。

根据上述评估问题的数据,对于DMUj0,可建立通常相对有效性DEA模型(CCR):

(1)

公式中使用了Charnes-Cooper变化,令,将DEA原本分式规划问题转化为等价的线性规划问题,便于计算[1]。

由此可以看出,DEA的评估是相当客观的,在评估在评价DMUj0时,就选择最有利于该DMUj0的权重(u和v的值)。评估结果不受人为因素的影响,只由那些客观的输入数据xj、输出数据yj所决定。

1.2 DEA权重设限模型(CCR/AR模型)

但是在实际的应用当中,针对不同的输入输出指标,它们的权重v和u确实存在着重要程度不一致的问题。比如,从实现企业短期的目标规划角度来讲,时间和成本是最重要的;而对于长期目标,柔性和质量是最重要的。所以,限制权重的范围为集成管理者喜好到DEA模型提供了一个好办法。

具体的就是首先应用AHP方法,通过决策者对这些指标进行分析、判断、综合,将他们对于这些指标权重的主观喜好进行量化处理,得到各个决策者认定的对于各个指标的权重值。集成所有决策者对于每个指标的权重值,就可以得到各个指标权重值的上界(Upper Bound,UB)和下界(Lower Bound,LB)[2]。把这个约束增加到DEA模型中去,就构成了DEA的权重设限模型(CCR/AR)。

一般的AR约束设置为:

(2)

这些约束条件(2)增加到公式(1)中构成了DEA的权重设限模型(CCR/AR)。增加的约束数量为,这里m和s分别是输入、输出指标的数量。

1.3 用AHP方法获取权重

针对决策者对于各个指标权重喜好的评估数据,文中应用AHP方法来获取。运用AHP进行决策时,大体可分为4个步骤进行[3]。

1.3.1 建立系统的递阶层次结构

应用AHP进行分析时,首先构造出一个层次分析的结构模型,分析系统中各因素之间的关系。以一个制造企业为例,AHP层级包括四层:

(1)目标层(2)战略层(3)操作层:包括可操作的指标,它们用于评估战略层的绩效。需要指出的是,这些操作层指标就是DEA模型中DMU的输入输出指标。最终需要计算各项操作层指标相对于总体目标的相对重要程度(权重)。(4)方案层:为了实现目标可供选择的各种方案,这里可以把各个候选流程作为方案。

1.3.2 构造两两比较判断矩阵

在建立递阶层次结构以后,上下层次之间元素的隶属关系就被确定了。接下来要对同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较判断矩阵。

1.3.3 单一准则下元素相对权重的计算

接下来根据判断矩阵来计算被比较元素对于该准则的相对权重,在这里,文章采用特征根方法来计算相对权重。

1.3.4 计算操作层指标对目标层的合成权重

上面得到的仅仅是一组指标对其上一层中某指标的权重向量,最终是要得到操作层各项指标对于总目标的组合权重。

1.3.5 权重的上下界

等到每一位决策者的操作层指标权重都获得后,就可以获取每一个指标权重的上界值和下界值,即公式(2)中的LB和UB值。

2 案例研究

某大型制造企业为了在成本、质量、服务和速度四项衡量企业绩效的关键指标上获得巨大的改善,决定对企业重要业务流程实施重组。经调查有10个候选业务流程,决定应用AHP-DEA模型对候选流程进行评估,从中选取出最符合公司发展战略的流程进行重构。

2.1 流程排序

表1中是各候选流程决策单元的输入输出指标数据。

各项指标权重上界和下界由AHP方法分析得到,如表2所示。

应用DEA权重设限模型(CCR/AR)计算各流程决策单元效率值见表3。

2.2 结果分析

为了进行比较,该文计算了CCR模型结果和CCR/AR模型结果,见表4。两个模型结果的差异充分说明了引入管理喜好对评估结果将产生很大的影响。指标权重的上界和下界值是由AHP分析得到的,CCR/AR模型仍然认定流程2是最优的,并且提供了一系列的流程排序。流程的排序对于决策者选择最优提供了很大的帮助。

3 结语

成功运用DEA模型的关键之一在于正确处理输入输出数据,本文提出用AHP方法对输入输出指标进行处理,所得的AHP-DEA模型使DEA方法与AHP方法有机地结合在一起,不仅克服了AHP方法过于依赖人的主观意识的倾向,同时也克服了DEA模型忽视人们的偏好等不利因素。

参考文献

[1] 《运筹学》教材编写组编.运筹学(修订版)[M].北京:清华大学出版社,2000.

[2] Joseph Sarkis.A methodological framework for evaluating environmentally consions manufacturing programs. Computers & Industrial Engineering[J].1999(36):793-810.

[3] 王莲芬,许树柏.层次分析法引论[M].北京:中国人民出版社,1990.

猜你喜欢
数据包络分析层次分析法
长株潭地区高职院校旅游管理专业办学效率研究
微电子科学与工程专业评价指标体系研究