如何将高中数学有效教学落到实处

2015-05-30 23:01李毅
关键词:异面变式直线

李毅

【中图分类号】G632 【文献标识码】A 【文章编号】2095-3089(2015)09-0127-02

有人说,一个教师一个教学手法,或许这是有道理的。但不管怎么教,讲效率却是任谁都不能忽视的。高中数学知识点更复杂,因此教师要想达到预期的目的,更应该将有效教学落到实处。要打造有效的课堂教学,要知道有效的数学学习活动不能单纯地依赖模仿和记忆,而要求学生动手实践,自主探索与合作交流。我们提供给学生的数学学习内容应当是有利于他们从事观察实验、猜测、验证、推理与交流等数学活动的素材。“学生的数学学习活动应当是一个生动活泼的、主动的、富有个性的过程”。新课程改革,改的中心问题是课堂改革,引导学生有效学习、打造有效课堂已成为新课标下的热点课题。下面谈谈我在新课标下高中数学课教学中的几点做法:

一、创设生活化问题情境,努力激发学生的学习兴趣

良好的开端是成功的一半。教师作为一节好课的幕后策划者,其主要任务之一便是创设富有吸引力的学习情境,让每位学习者身临其中,触景生情,因为它关系到学生是否集中精力听课以及本堂课能否顺利进行。

比如我在讲授“异面直线”概念的教学中,先让学生在长方体模型和图形中找出两条既不平行又不相交的直线,告诉学生像这样的两条直线就叫做异面直线,接着提出“什么是异面直线”的问题,让学生相互讨论、尝试叙述,经过反复修改补充后,得出简明、准确、严谨的定义:“我们把不同在任何一个平面上的两条直线叫做异面直线。”在此基础上,再让学生找出教室或长方体中的异面直线,最后以平面作衬托画出异面直线的图形。学生经过以上过程对异面直线的概念有了明确的认识,同时也经历了概念发生发展过程的体验。还比如我在讲授“二分法”概念的教学中,设计了中央电视台幸运52栏目的电视节目“手机估价问题” ,具体是这样设计的:首先给定手机价格的大致范围500至1000元,接着让学生根据生活经验猜价。学生回答750元;我说高了,那么价格就会在500~750元;学生回答625元,我又说高了,那么价格就会在500~650元……经过这样几次折中并逐渐逼近的方法学生得到了手机的近似价格,顺水推舟,我说数学上把这种方法叫二分法,然后让学生尝试叙述,得出简明、准确、严谨的定义。试想这样的问题情境,怎能不激发学生的好奇心,怎能不激发学生的求知欲呢?学生可以结合自己的生活经验来进行判断,在充满愉快的学习过程中,锻炼了学生的思维能力。

好的问题情境是沟通教师、教材和学生三者联系的“铺路石”,是点燃学生思维的“火种”。因此,每节课的导语是组织好一堂课、调动学生积极性的关键。而我们却往往忽略了这一点,这样势必影响学生及早进入学习的状态。

二、问题是数学课堂教学的灵魂

我认为“问题”是数学的灵魂。教师课前应当充分预设每一个教学环节的引领性问题,并根据学生在课堂上不断生成的新问题调整、重组,灵活机动地组织教学。其中教师的课堂提问尤显重要,它能打开学生求知的天窗。但是在数学课堂上问什么?如何问?我个人的看法是:

1、在关键处发问点拨。

也就是说问问题的目的是让学生说出他们的思维过程,换句话说是看学生思维背后的东西。切忌华而不实的提问,如“是不是”、“有没有”,听起来热闹,实际上学生并没怎么思维,达不到学习数学的真正目的。

如函数概念的学习,我们的复习回顾一般有两种提问方式:一种是提问学生“我们学过的函数有哪些”,另一种是提问学生“生活中的函数有哪些?举例说明”。显然,第一种比较肤浅,学生不需怎么思维;要想回答第二种,学生得进行大量思维,考虑举的例子是否是函数,进而达到理解函数实质的目的。

2、提问还得注意以下几点:

(1) 提出问题,要给学生留一定的思考时间。

(2) 问题的提出要简明、准确、循序渐进。

(3)问题要有启发性。

数学课堂提问还有许多具体的方式、方法,有待于教师在教学实践中去探讨、运用。好的提问,能激发学生探究数学问题的兴趣,激活学生的思维;好的提问,需要我们教师要做有心人,问题要设在重点处、关键处、疑难处。这样,就能充分调动学生思维的每一根神经,就能极大地提高数学课堂的教学效率。

3、运用变式训练的教学方法,提高学生对知识的吸收率

在解题教学中,教师可利用变式来改变题目的条件或结论,结论与条件对调等,揭示条件、目标间的联系,解题思路中方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。在解题教学的思维训练中,变式是一种很有效的方法。通过变式训练,可以从不同角度去改变题目,通过解题后的反思,归纳出同一类问题的解题思维形成过程与方法的采用;通过改变条件,可以让学生对满足不同条件的情况作出正确的分析;通过改变结论等,可培养学生推理、探索的思维能力,进而提高学生对知识的吸收率。解题的变式分为解题方法的变式与题型的变式。解题方法的变式有时称为“一题多解”,在此以题型的变式为例举例说明。《椭圆和它的标准方程》的例3:“已知一个圆的圆心为坐标原点,半径为2,从这个圆上任一点P向X轴作垂线段PP1,求线段PP1中点M的轨迹。”可将此题目变为:

变式1.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任一点P向Y轴作垂线段PP1,求线段PP1中点M的轨迹。

变式2.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任一点P向坐标轴作垂线段PP1,求线段PP1中点M的轨迹方程。

变式3.已知一个椭圆的方程,从这个椭圆上任一点P向x轴作垂线段PP1,求线段PP1中点M的轨迹。

变式4.已知一个椭圆的方程,从这个椭圆上任一点P向坐标轴作垂线段PP1,求线段PP1中点M的轨迹方程。

变式1是对例题的模仿,目的是让学生熟悉利用中间变量法求轨迹的过程;变式2的目的是让学生进一步熟悉利用中间变量法求轨迹的方法,并要进行分步讨论;四个变式的目的都是让学生掌握利用中间变量法求轨迹的方法。

通过变式训练,把看似枯燥的性质、定理通过层层解剖,把本质展现出来,把一个问题通过对结论进行联想、分析、探索,最终把隐含的有意义的结论一一推导了出来。通过改变条件,发现由不同条件可以得出相同的结论,找出不同知识之间的联系与规律;也可以通过结论与条件的互换理解原命题与逆命题之间的关系,加深对命题真假的辨析能力;更重要的是通过变式教学,培养学生敢于思考、敢于联想、敢于怀疑的品质,培养学生的自主探究能力与创新精神。通过变式教学,可以让我们的学生在无穷的变化中领略数学的魅力,在曼妙的演变中体会数学的快乐,让学生利用有限的时间创造无限的效益。

总之,高中数学的有效教学需要师生共同努力。教师的科学教学思维是先导。方法的传授胜于题海战术的轰炸。要提高高中数学课堂教学质量,必须树立教师是主导、学生是主体的辩证观点,形成热烈的学习气氛,凭借数学思维性强、灵活性强、运用性强的特点,精心设计教案,注重学生优秀思维品质的培养,变被动为主动,变学会为会学,这样就一定能达到传授知识、培养能力的目的,收到事半功倍的效果。

猜你喜欢
异面变式直线
一道拓广探索题的变式
聚焦正、余弦定理的变式在高考中的应用
求解异面直线夹角问题的两个路径
画直线
六种方法破解高考异面直线所成的角
课后习题的变式练习与拓展应用
两条直线 变变变
画直线
问题引路,变式拓展
走直线等