浅谈高中数学教学中学生逆向思维能力的培养

2015-05-30 13:56:33徐吉明
中国校外教育(下旬) 2015年9期
关键词:逆向思维能力培养途径高中数学

徐吉明

摘要:随着新课改的实施,素质教育成为新一轮课程改革引领的方向,更加注重培养学生的创新思维。逆向思维作为数学思维的一个重要方面,更是创新思维的重要组成部分。因此,教师要转变传统的教学观念,在教学实践中要重视培养学生的逆向思维能力和创新意识。

关键词:高中数学 逆向思维能力 培养途径

数学是一门注重培养学生思维的学科。《高中数学课程标准》中明确指出:“数学思维能力在形成理性思维中发挥着独特的作用,要注重对数学本质的理解和思想方法的把握。”长期的实践表明,如果按部就班的对学生进行引导,会导致学生形成思维定式。而有意识的对学生进行逆向思维的训练,有利于帮助学生转变错误的观念,形成正确认知,而且有利于帮助学生发展创新思维。本文结合笔者多年的教学实践经验,就“高中数学教学逆向思维能力的培养”这一课题浅谈如下自己的看法。

一、什么是逆向思维

所谓逆向思维,是一种创造性思维,它是指与原先思维相反方向上的思维。相对正向思维而言,它是与人们常规思维程序相反的,不是从原因(或条件)来推知结果(或结论),而是从相反方向展开思路去分析问题、得出结论。

逆向思维就是突破习惯思维的束缚,做出与习惯思维方向相反的探索。如果学生有逆向思维的能力,采用这种思维去解决问题,就很容易找到解题的突破口,寻找到解题的方法和恰当的路径,使解题过程简洁而新颖,逆向思维不仅可以加深对原有知识的理解,还可以从中发现一些新的规律,或许会创造出更新更好的方法。在数学教学中有目的地设汁一些互逆型问题,能从另一个角度去开阔学生的思路,就会促使学生养成从正向和逆向两个方面去认识、理解、应用新知识的习惯,从而提高学生分析问题和解决问魉的能力。

二、高中数学教学逆向思维能力的培养途径

1.在数学概念教学中训培养逆向思维。高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。

2.在解题教学中的培养逆向思维。解题教学是培养学生思维能力的重要手段之一,因此教师在进行解题教学时,应充分进行逆向分析,以提高学生的解题能力。

(1)顺推不行则逆推。有些数学题,直接从已知条件入手来解,会得到多个结论,导致中途迷失方向,使得解题无法进行下去。此时若运用分析法,从命题的结论出发,逐步往回逆推,往往可以找到合理的解题途径。

(2)直接不行换间接。还有一些数学题,当我们直接去寻求结果十分困难时,可考察问题中的其他相关元素从而间接求得结果。

3.利用反证问题培養逆向思维。反证法实质上是证明命题的逆否命题成立,即当命题由题设结论不易着手时,而改证它的逆否命题,是从题断的反面出发,以有关的定义、定理、公式、公理为前提,结合题设,通过推理而得出逻辑矛盾。从而得知题断的反面不能成立。应用反证法证明的主要三步是:否定结论一推导出矛盾一结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。

在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”“至少”或“至多”“唯一”“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。

4.强化学生的逆向思维训练。一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面入手解决不了就考虑从问题的反面入手;探求问题的可能性有困难就考虑探求其不可能性。

5.灵活运用基本数学方法,促进逆向思维发展。

(1)分析法是从结论出发“执果索因”,步步寻求结论成立的充分条件,它只要求每相邻的两个论断中,后一个是前一个的充分条件(不一定等价),用分析法思考,要论证的结论本身就是出发点,学生知道了应从什么地方着手,能自觉地、主动地去思考,学生的解决问题的信心便大大增强了。“由因导果”的方法通常称为综合法。分析法和综合法各有千秋,可以互相弥补对方的不足。在实际论证一个命题时,先用分析法思考发现可以作为论证出发点的真命题,再用综合法表达出证明过程,两者配合起来,在教学中运用十分广泛,且分析法常用于不等式和恒等式的证明。

(2)逆证法虽然也是从结论出发,但它与分析法还是有区别的,逆证法要求推理过程中,任何两论断都互为充要条件,逆证法首先对不等式或恒等式进行变形,逐步推出一个已知的不等式或恒等式,这比较直截了当,检查这些变形是可逆的并不困难,但在一般情况下使用逆证法并不省事,应让学生重点掌握分析法。

参考文献:

[1]韦德奉.浅析高中数学教学中的逆向思维[J].高中数理化,2011,(10).

[2]傅伟敬.高中数学教学中学生逆向思维的培养[J].读写算,2012,(74).

[3]孙艳松.高中数学教学逆向思维能力的培养[J].科技视界,2014,(2).

猜你喜欢
逆向思维能力培养途径高中数学
逆向思维在初中数学教学中的培养
试析初中数学教学中应如何培养学生的逆向思维能力
探索初中数学教学中学生逆向思维能力的培养
高等数学教学培养学生应用能力的探讨
科教导刊(2016年26期)2016-11-15 19:56:44
高中物理教学中学生解题能力的培养
小学数学教学中对学生逻辑思维能力的培养
考试周刊(2016年77期)2016-10-09 11:17:05
浅析农村小学数学教学中如何培养学生创新意识
考试周刊(2016年77期)2016-10-09 11:14:58
高中数学数列教学中的策略选取研究
考试周刊(2016年77期)2016-10-09 10:58:31
调查分析高中数学课程算法教学现状及策略
考试周刊(2016年76期)2016-10-09 08:54:54
基于新课程改革的高中数学课程有效提问研究
考试周刊(2016年76期)2016-10-09 08:20:33