张 霞,苏本利
(大连医科大学附属第二医院 内分泌科,辽宁 大连 116027)
基于肠促胰素的治疗对糖尿病肾病的保护作用
张霞,苏本利
(大连医科大学附属第二医院 内分泌科,辽宁 大连 116027)
基于肠促胰素的治疗包括胰高血糖素样肽(GLP-1)受体激动剂和二肽基肽酶4(DPP-4)抑制剂,这类药物能够改善机体高血糖状态,保护β细胞功能,无体重增加,从而延缓糖尿病肾病病程的进展。此外,这类药物的胰腺外作用及GLP-1的依赖性和非依赖效应在糖尿病肾病中起着独特的作用,并引起广泛关注。本文综述了相关方面的前期临床和临床研究数据,提示这类药物对肾脏存在保护作用以及对血压及尿蛋白有改善作用,可能在糖尿病肾病中有着广泛的应用前景。
肠促胰素;糖尿病肾病;GLP-1;GLP-1受体激动剂;DPP-4;DPP-4抑制剂
[引用本文]张霞,苏本利. 基于肠促胰素的治疗对糖尿病肾病的保护作用[J].大连医科大学学报,2015,37(2):105-108.
胰高血糖素样肽(GLP-1)是一种肠促胰素,主要在肠道食物吸收过程中由肠黏膜内分泌细胞(L细胞)释放,与胰腺组织中胰高血糖素肽-1受体(GLP-1R)结合,GLP-1可刺激β细胞释放胰岛素,并抑制胰腺α细胞胰高血糖素的释放,从而降低血糖水平。然而GLP-1的半衰期不足2 min,其氨基末端可迅速被二肽基肽酶4(DPP-4)酶切,使GLP-1失去活性,因此DPP-4是GLP-1生物活性的决定因素。DPP-4是一种丝氨酸蛋白酶家族的Ⅱ型跨膜糖基化蛋白,又称T细胞表面抗原CD26,以膜结合型和可溶型两种形式存在,目前认为循环中的DPP-4与DPP-4抑制剂的降糖作用有关,而在多种细胞表面表达的膜结合型DPP-4则参与细胞的信号传导和其他非降糖的作用[1]。基于肠促胰素的治疗包括GLP-1受体激动剂和DPP-4抑制剂,均可增加循环中GLP-1的水平,改善机体的高血糖状态,是目前备受关注的一类降糖药物。由于GLP-1R和DPP-4在体内多种组织器官均有表达,愈来愈多的研究发现这类药物有胰腺外超越降糖的作用,如心血管的保护作用,神经保护等[2-3]。特别是GLP-1R和DPP-4在肾脏多种细胞的表达,前期临床和临床试验数据提示这类药物对肾脏存在保护作用以及对血压及尿蛋白有改善作用,本文针对已经发现的研究结果进行综述,帮助进一步理解基于肠促胰素的治疗对糖尿病肾病的作用。
GLP-1R mRNA在大鼠的肾小管上皮细胞被发现[4],人类肾脏皮质的免疫组化也显示肾小管上皮细胞的GLP-1R信号[5]。GLP-1R在肾小球内皮细胞,系膜细胞,足细胞,近曲小管细胞都有表达,已发现GLP-1R在糖尿病大鼠的肾小球表达减少[6-7]。越来越多证据显示GLP-1R激动剂可能通过增加肾小球GLP-1R表达的途径,进而修复GLP-1对肾血管内皮的保护功能,抑制炎症反应和纤维化,抗氧化应激和减少白蛋白尿。应用GLP-1R激动剂(exendin-4,liraglutid)的研究主要集中在糖尿病或高血压的动物模型上。
在1型糖尿病的大鼠模型中,应用exendin-4治疗可以使肾小球中GLP-1R阳性的细胞增加,抑制肾小球内皮细胞TNF-α和VCAM-1的表达,减少氧化应激和炎症细胞因子,抑制巨噬细胞致炎因子的释放来阻止肾小球肥厚和巨噬细胞浸润,减少肾小球和肾小管间质纤维化,并减少白蛋白尿[8]。
在db/db糖尿病大鼠模型,exendin-4治疗增加GLP-1R阳性细胞的免疫活性,抑制肾小球肥厚,基质扩张,炎症细胞浸润和TGF-β1表达,减少胶原蛋白和脂质在肾小球沉积,减少肾小球凋亡细胞的数目[6],同样减少尿白蛋白排泄。体外也观察到exendin-4可抑制高糖处理的人类系膜细胞的过度增生,抑制TGF-β的mRNA和蛋白的表达,这提示GLP-1R激动剂治疗可改善糖尿病肾病的间质纤维化[9]。
由于炎症反应是糖尿病肾病的发病机制之一,在体外观察到exendin-4通过GLP-1R和cAMP/PKA途径的随后激活而产生抗炎特性[10]。GLP-1可能通过对cAMP/PKA信号通路的活化来介导抑制肾NAD(P)H氧化酶而产生抗炎作用[11]和抑制糖基化终末产物(AGEs)受体的表达而减少AGEs的产生来抵抗糖基化终末产物效应[12]。
近期Mima A等[7]发现高糖致肾脏PKC途径的激活可以减弱GLP-1的信号通路、增加血管紧张素Ⅱ(AngⅡ)和NF-κB的信号途径进而造成肾小球内皮功能损伤。在肾小球内皮细胞增加GLP-1通过cAMP/PKA途径可抑制AngⅡ信号途径和其促炎症反应 (上调Ser259磷酸化抑制Ser338和Erk1/2l磷酸化,使PAI-1下降)。
另外,研究也发现GLP-1和GLP-1R激动剂有降压作用。在Dahl 盐敏感大鼠模型中,GLP-1的缓慢输注可以增加肾小球滤过率(GFR),抑制近曲小管重吸收,增加尿钠排泄,同样exendin-4治疗也可降低血压,减少心脏病发病率,改善胰岛素抵抗及减少蛋白尿[13]。在AngⅡ诱导的盐敏感高血压大鼠模型中,exendin-4治疗也可以使血压下降[14]。机制除干扰AngⅡ信号途径外,可能还与GLP-1调节近曲小管Na+/H+交换的作用有关。输注GLP-1明显减少Na+/H+同种交换体3(NHE3)介导的碳酸氢盐的重吸收,从而增加肾血流和GFR[15-16]。
目前在2型糖尿病肾病患者中的相关研究还很少。在一个小样本16周的临床研究中,艾塞纳肽治疗使24 h尿蛋白的排泄下降40%,尿TGF-β1和胶原蛋白Ⅳ明显下降[17]。
膜结合型的DPP-4也在肾的多种细胞表面表达,包括肾上皮、内皮和T细胞[18]。Jackson等[19]发现在大鼠的入球微小血管平滑肌细胞和肾小球系膜细胞DPP-4 mRNA和蛋白的表达,在炎症状态下培养的人类肾小球上皮细胞[20]和在高脂饲养的糖尿病大鼠肾脏,DPP-4的表达是增加的[21]。炎症时DPP-4表达的增加提示DPP-4在糖尿病肾病的发展起一定作用,目前肾和尿中增加的DPP-4活性被认为是肾小球疾病的标志物[22-23]。研究数据显示这种DPP-4的抑制对肾的保护作用分GLP-1依赖性和非依赖性。
在1型糖尿病大鼠中,vildagliptin治疗使GLP-1R活化,增加GLP-1的水平,可抑制间质扩张,肾小球硬化和肾小球基底膜增厚,减少白蛋白尿和TGF-β的过度表达,抑制DNA氧化应激损伤和细胞凋亡,并呈剂量依赖性,再次证明了抗凋亡、抗炎、抗氧化的作用[24]。在2型糖尿病大鼠中(Zucker diabetic fatted rats),sitagliptin的治疗可出现类似的肾保护作用,改善肾小球,肾小管间质和血管的病变,减少脂质过氧化物丙二醛的下降[25]。在代谢综合征的大鼠模型,sitagliptin可抵抗AngⅡ诱导的肾血管收缩[26],能够加强ACEI的作用,降低血压[27]。
有趣的是,在内皮一氧化氮合成酶(eNOS)基因敲除的糖尿病大鼠的模型(糖尿病肾病的动物模型),linagliptin联合AngⅡ受体拮抗剂(ARB)替米沙坦(非降压剂量)治疗 12周后,发现尿白蛋白的排泄是明显减少的,而且linagliptin无论单药还是联合治疗均能减少古桥蛋白(血管钙化和纤维化的标志物)、丙二醛(氧化应激的生物标志物)和TNF-α(系统性炎症的标志物)的水平,改善肾小球硬化,单独应用ARB组并没有产生这样的结果[28],提示DPP-4抑制剂可能在对ARB存在抵抗时有效。
除了GLP-1外,DPP-4还可作用于多种底物,包括基质细胞衍生因子-1α(SDF-1α),脑钠尿肽(BNP),金属内肽酶(Meprinβ),NPY/PYY。目前已知,DPP-4抑制剂可上调SDF-1α、BNP及meprin β等分子的表达,从而发挥非GLP-1 依赖性的肾保护作用[29]。
SDF-lα是一种调节细胞迁移及发育的多功能因子,而CXC趋化因子受体4(CXCR4)是SDF-1的特异性受体。最近有研究发现,SDF-1α是系膜细胞纤维连接蛋白(FN)表达的抑制因子。而SDF-1α可与CXCR4结合而活化下游信号通路,从而抑制TGF-β1激活的Smad信号通路,最终抑制FN的表达,对肾脏产生保护作用[30]。
BNP作为一种内源性的肾素-血管紧张素系统抑制剂,可减轻全身及局部AngⅡ的作用。同时,BNP的增加可通过抑制肾素-血管紧张素系统及TGF-β系统减轻肾小球高压力状态。有研究发现,与野生型糖尿病小鼠相比,在BNP过表达的转基因糖尿病小鼠中,仅有轻度的系膜基质积聚,肾小球不发生肥大,同时尿白蛋白显著减少,肾功能明显改善[31]。
Meprin是一种位于肾近端小管刷状缘膜上的金属内肽酶,可降解细胞外基质蛋白并产生生物活性蛋白,研究表明meprin β具有激活促炎性反应细胞因子的作用。与meprin β基因敲除小鼠相比,野生型小鼠更容易发生肾缺血再灌注后的肾脏损伤[32],另一项研究发现与DPP-4+/+小鼠相比,DPP-4-/-小鼠和给药vildagliptin的小鼠肾组织中的meprin β降低[33]。因此,DPP-4抑制剂在糖尿病肾病中的肾脏保护作用可能与meprin β的减少有关。
提示DPP-4抑制剂有肾保护作用的第一个临床研究是36个2型糖尿病患者应用sitagliptin治疗6个月,除血糖血压明显下降,CRP, VCAM-1和白蛋白肌酐比(UACR)均下降[34]。在另一项sitagliptin的临床试验中,UACR作为一项次要终点被评价,UACR 从(76.2±95.6)mg/g下降至(33.0±48.1)mg/g[35]。2012年公布了一项linagliptin的随机双盲安慰剂对照的临床试验:合并白蛋白尿(30 mg/g≤UACR≤3000 mg/g)的2型糖尿病患者入组时均有稳定的ACEI和 ARB的治疗,经过24周的linagliptin治疗,尿白蛋白排泄明显减少33%,有趣的是这种白蛋白尿的改善与血糖下降无关[36]。为了针对和评价linagliptin在2型糖尿病合并肾损伤的患者中能够减少尿白蛋白排泄的作用,一项名为MARLINA(Efficacy,Safety & Modification of Albuminuria in Type 2 Diabets Subjects With Renal Disease with Linagliptin)临床试验已经启动,期待有更积极的结果。
目前发表的研究显示,基于肠促胰素的治疗对肾脏存在多种保护作用以及对血压及尿蛋白有改善作用。可能的机制包括改善内皮功能,抗炎和抗氧化应激,抵抗Ang Ⅱ,促进尿钠排泄等,以及存在非GLP-1依赖性的作用。研究提示似乎与ACEI或ARB类药物的联合应用获益明显。其中的机制复杂,尚不清楚,与其相关的研究仍是当前的研究热点,也需要更大规模的长期临床试验和数据来评价这类药物在糖尿病肾病中的有效作用和应用空间。
[1] Von Websky K,Richetzeder C,Hocher B. Physiology and pathophysiology of incretins in the kidney[J].Curr Opin Nephro Hypertens,2014,23(1):54-60.
[2] Abu-Hamdah R,Rabiee A,Meneilly GS,et al. Clinical review:The extrapancreatic effects of glucagon-like peptide-1 and related peptides[J].J Clin Endocrinol Metab,2009,94(6):1843-1852.
[3] Hocher B,Reichetzeder C,Alter ML. Renal and cardiac effects of DPP4 inhibitors-from preclinical development to clinical research[J].Kidney Blood Press Res,2012,36(1):65-84.
[4] Schlatter P,Beglinger C,Drewe J,et al. Glucagon-like peptide 1receptor expression in primary porcine proximal tubular cells[J].Regul Pept,2007,141(1-3):120-128.
[5] Körner M,Stöckli M,Waser B,et al. GLP-1 receptor expression in humantumors and human normal tissues:potential for in vivo targeting[J].J Nucl Med,2007,48(5):736-743.
[6] Park CW,Kim HW,Ko SH,et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice[J].J Am Soc Nephrol,2007,18(4):1227-1238.
[7] Mima A,Hiraoka-Yamomoto J,Li Q,et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes[J].Diabetes,2012,61(11):2967-2979.
[8] Kodera R,Shikata K,Kataoka HU,et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes[J].Diabetologia,2011,54(4):965-978.
[9] Li W,Cui M,Wei Y,et al. Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4,a glucagon-like peptide-1 receptor agonist[J].Cell Physiol Biochem,2012,30(3):749-757.
[10] Ishibashi Y,Nishino Y,Matsui T,et al. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level[J].Metabolism,2011,60(9):1271-1277.
[11] Hendarto H,Inoguchi T,Maeda Y,et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in treptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases[J].Metabolism,2012,61(10):1422-1434.
[12] Ojima A,Ishibashi Y,Matsui T,et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end productinduced protein arginine methyltranferase-1 expression[J].Am J Pathol,2013,182(1):132-141.
[13] Yu M,Moreno C,Hoagland KM,et al. Antihypertensive effect of glucagonlike peptide 1 in Dahl salt-sensitive rats[J].J Hypertens,2003,21(6):1125-1135.
[14] Hirata K,Kume S,Araki S,et al. Exendin-4 has an antihypertensive effect in salt-sensitive mice model[J].Biochem Biophys Res Commun,2009,380(1):44-49.
[15] Carraro-Lacroix LR,Malnic G,Girardi ACC. Regulation of Nat/Htexchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells[J].Am J Physiol Renal Physiol,2009,297(6):F1647-F1655.
[16] Crajoinas RO,Oricchio FT,Pessoa TD,et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1[J].Am J Physiol Renal Physiol,2011,301(2):F355-F363.
[17] Zhang H,Zhang X,Hu C,et al. Exenatide reduces urinary transforming growth factor-β1 and type IV collagen excretion in patients with type 2 diabetes and microalbuminuria[J].Kidney Blood Press Res,2012,35(6):483-488.
[18] Lone AM,Nolte WM,Tinoco AD,et al. Peptidomics of the prolyl peptidases[J].AAPS J,2010,12(4):483-491.
[19] Jackson EK,Kochanek SJ,Gillespie DG. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells[J].Hypertension,2012,60(3):757-764.
[20] Stefanovic V,Ardaillou N,Vlahovic P,et al. Interferon-gamma induces dipeptidyl peptidase IV expression in human glomerular epithelial cells[J].Immunology,1993,80(3):465-470.
[21] Yang J,Campitelli J,Hu G,et al. Increase in DPP-IV in the intestine,liver and kidney of the rat treated with high fat diet and streptozotocin[J].Life Sci,2007,81(4):272-279.
[22] Kanwar YS,Wada J,Sun L,et al. Diabetic nephropathy:mechanisms of renal disease progression[J].Exp Biol Med (Maywood),2008,233(1):4-11.
[23] Mitic B,Lazarevic G,Vlahovic P,et al. Diagnostic value of the aminopeptidase N,N-acetyl-beta-D-glucosaminidase and dipeptidyl peptidase IV in evaluating tubular dysfunction in patients with glomerulopathies[J].Ren Fail,2008,30(9):896-903.
[24] Liu WJ,Xie SH,Liu YN,et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats[J].J Pharmacol Exp Ther,2012,340(2):248-255.
[25] Mega C,de Lemos ET,Vala H,et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat) [J].Exp Diabetes Res,2011,2011:162092.
[26] Tofovic DS,Bilan VP,Jackson EK. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome[J].Clin Exp Pharmacol Physiol,2010,37(7):689-691.
[27] Marney A,Kunchakarra S,Byrne L,et al. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans[J].Hypertension,2010,56(4):728-733.
[28] Alter ML,Ott IM,von Websky K,et al. DPP-4 Inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy[J].Kidney Blood Press Res,2012,36(1):119-130.
[29] Panchapakesan U,Mather A,Pollock C. Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease[J].Clin Sci (Lond),2013,124(1):17-26.
[30] Zhang D,Shao S,Shuai H,et al. SDF-lα reduces fibronectin expression in rat mesangial cells induced by TGF-β1 and high glucose through PI3K/Akt pathway[J].Exp Cell Res,2013,319(12):1796-1803.
[31] He JG,Chen YL,Chen BL,et al. B-type natriuretic peptide attenuates cardiac hypertrophy via the transforming growth factorβ1/smad7 pathway in vivo and in vitro[J].Clin Exp Pharmacol Physiol,2010,37(3):283-289.
[32] Bylander J,Li Q,Ramesh G,et al. Targeted disruption of the meprin metalloproteinase beta gene protects against renal ischemia-reperfusion iniury in mice[J].Am J Physiol Renal Physiol,2008,294(3):F480-F490.
[33] Tagore DM,Nolte WM,Neveu JM,et al. Peptidase substrates via global peptide profiling[J].Nat Chem Biol,2009,5(1):23-25.
[34] Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes[J].Endocr J,2011,58(1):69-73.
[35] Harashima SI,Ogura M,Tanaka D,et al. Sitagliptin add-on to low dosage sulphonylureas:efficacy and safety of combination therapy on glycaemic control and insulin secretion capacity in type 2 diabetes[J].Int J Clini Pract,2012,66(5):465-476.
[36] Groop PH,Cooper ME,Perkovic V,et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction[J].Diabetes Care,2013,36(11):3460-3468.
Effects of incretin-based therapies on diabetic nephropathy
ZHANG Xia,SU Ben-li
(DepartmentofEndocrinologyandMetabolism,theSecondAffiliatedHospitalofDalianMedicalUniversity,Dalian116027,China)
Incretin-based therapies in the treatment of patients with type 2 diabetes include Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. This class of compounds can improve hyperglycemia,protect β-cell function without weight gain,which may partly prevent progression of diabetic nephropathy. Moreover,cumulative data suggest that incretin-based treatments interrupt the pathogenesis of diabetic nephropathy by their pleiotropic positive effects on kidney apart from decreasing glucose. This review focuses on these experimental and clinical studies to highlight the renoprotection effects of incretin-based therapies. Ongoing prospective studies are needed to clarify their possible role in the attenuation of diabetic nephropathy.
Incretin; diabetic nephropathy; GLP-1; GLP-1 receptor agonists; DPP-4; DPP-4 inhibitors
专家述评10.11724/jdmu.2015.02.01
科技部“十一五”支撑计划项目(2008BAI02B08);辽宁省自然科学基金项目(20062160)
张 霞(1976 -) 女,辽宁大连人,副主任医师。研究方向:糖尿病及相关并发症。E-mail:zhxia_dl@hotmail.com
苏本利,教授。 E-mail:dlbenlisu@163.com
R587.1
A
1671-7295(2015)02-0105-04
2015-01-27;
2015-03-01)