毛建景, 张凯萍, 郝东山
(郑州工业应用技术学院信息工程学院, 新郑 451150)
Compton散射下超强激光瞬态等离子体的频率响应特性
毛建景, 张凯萍, 郝东山
(郑州工业应用技术学院信息工程学院, 新郑 451150)
应用多光子非线性Compton散射和实验探测的方法,对超强激光瞬态等离子体的频率响应特性进行了研究,提出了将入射超强激光和Compton散射光作为形成等离子体碰撞频率的新机制,给出了电子碰撞频率的时空演化方程和实验结果.结果表明:与散射前相比,4.17 kHz以下的功率谱线较平滑,不同时刻抖动幅度不大,且抖动的频率降低了1.63 kHz.当频率达到6.12 kHz时,功率谱线出现了35 mW幅度抖动,且大幅抖动的频率降低了0.88 kHz,幅度增大了5 mW.当频率达到9.7 kHz时,功率谱线的峰值近似于全谱峰值,且该谱线峰值的频率降低了1.3 kHz.由4.17~9.7 kHz低频谱产生的功率谱线缩小了0.21 kHz.超过9.1 kHz后,功率谱线抖动对功率谱线峰值的贡献是次要的.这主要是由于散射使等离子体的高频非线性成分增大,低频成分缩小,且4.17~9.7 kHz中亦包含有散射贡献的缘故.
超强激光; 瞬态等离子体; 频率响应; 功率谱线; 多光子非线性Compton散射
超强激光脉冲与物质作用产生的瞬态等离子体是高温等离子体领域一个重要研究方向[1],它与超高速碰撞产生的瞬态等离子体特性非常相似,在实验室即可实现,尤其在航天器对空间碎片的防护[2]、材料制备[3]、表面处理[4]、环境工程[5]等方面具有广泛的应用前景,因此瞬态等离子体已引起了人们的高度关注和深入研究[6-9].在对瞬态等离子体频率特性的研究中,唐恩凌等人[10-12]发现该等离子体具有以低频为主的频谱特性,给出了其粒子密度和能量的时空演化规律.高海林等人[13]提出将入射光和Compton散射光作为等离子体散射新机制,给出了亚皮秒超高斯脉冲在等离子体中的传输特性,Compton散射、离子初速对等离子体鞘层厚度的影响[15]、调制不稳定特性[16,17]、辐射阻尼效应[18]、自聚焦效应[19]、等离子体密度时演特性[20].但在对瞬态等离子体频率响应特性的研究中,以上并未涉及非线性Compton散射的影响.实验表明[21],激光强度达1016W/cm2量级时,非线性Compton效应开始显现.可见,非线性Compton散射对瞬态等离子体频率响应特性的影响是不能忽略的.本文针对该问题进行了研究,给出了瞬态等离子体功率谱特性.
若瞬态等离子体中发生Compton散射(简称散射),则散射光频为[20]
(1)
(2)
考虑到实验中采用探针对瞬态等离子体进行诊断[10],假定瞬态等离子体在两个平行电极(探针和靶板)之间产生,带电粒子在两极间的外加电场和耦合光的电场中以角速度ωe运动,其运动方程为
[-me(Δυνe+υΔνe)-eΔEexp(iωet)]
(3)
式中,υ和Δυ、νe和Δνe分别为散射前电子速度及其扰动量、碰撞频率及其扰动量;me为散射后电子相对论质量,且me=m0/[1-(υ+Δυ)/c2]1/2;E和ΔE分别为外加电场强度与入射激光的电场强度之和及其扰动量;式两端第二项为散射扰动项.由式(3),可得电子运动速度为
(4)
若电极面积为A,极间距离为d,则极间的电流为
(5)
式中,V0和ΔV0、ne和Δne分别为散射前极间外加交变电场的幅值及其扰动量、电子密度及其扰动量.散射后外加交变电压为
V(t)+ΔV(t)≈V0sinωt+ΔV0sinωt
(6)
式(6)两端第二项为散射扰动项.由此可得探针体系的阻抗为
(7)
等效电阻和电抗分别为
(8)
(9)
式(8)和(9)中两端第二项为等效电阻和电抗扰动项.电子的碰撞频率为
(10)
式中,kB为玻尔兹曼常数;Te和ΔTe、p和Δp、υm和Δυm、λeo和Δλeo分别为散射前电子温度及其扰动(单位为eV)、气压及其扰动(单位为Pa)、电子方均根速率及其扰动、归一化电子平均自由程及其扰动(单位为cm·Pa).因为散射下νe>>ω的条件成立,所以Rd>>Xd,即散射下的瞬态等离子体仍具有纯电阻特性,可保证探针的两路输出具有同步性.
采用聚焦强度和直径分别为1016W/cm2和1 mm的激光束,靶材厚度为25 mm的2024-T4铝靶材进行实验,采用朗缪尔三探针测量等离子体的特征量.以激光脉冲入射到的靶点作为坐标原点,激光传输方向作为空间三维坐标x、y、z轴的正方向,垂直靶平面且方向向上的方向为z轴的正方向,x轴方向满足右手螺旋定则.朗缪尔三探针的中心坐标为(-50,0.75),将其测得等离子体粒子密度最大值3×1011/cm3作为等离子体的初始密度.实验基本参数见表1.取等离子体耦合频率为ωc=π/3.5,kBTe=1.2 eV.电子密度和平均自由程的表达式分别为
(11)
(12)
表1 基本实验参数
图1 实验1中探针接收到的不同频率超强激光瞬态等离子体频谱图
探针接收到的不同频率等离子体的谱功率如图1和2所示,图1(b)~(f)中的B实线表示图1(a)中的全谱功率.由图1知,在4.17 kHz以下,功率谱线比较平滑,且不同时刻的抖动幅度不大,但引起抖动的频率较散射前降低了1.63 kHz.当频率达到6.12 kHz时,功率谱线出现了35 mW的大幅度抖动,引起大幅抖动的频率较散射前频率降低了0.88 kHz,幅度增大了5 mW.当频率达到9.7 kHz时,功率谱线的峰值与图1(a)中的全谱峰值相当,产生该谱线峰值的频率较散射前降低了1.3 kHz.可见,4.17~9.1 kHz低频段对功率谱线的贡献较大,但较散射前的低频段缩小了0.27 kHz.这主要是由于散射使等离子体的高频非线性成分增大,低频线性成分减小,其中4.17~9.1 kHz低频段中亦包含有散射贡献的缘故.
由图2知,频率在4.17 kHz以下,功率谱线较平滑,抖动小;当频率达到6.12 kHz时,功率谱与图2(a)中所示的全谱峰值相当.由图1和图2知,4.17~9.1 kHz低频段对功率谱线的贡献是主要的,且是由入射光和散射光共同决定的,但散射的贡献是次要的.超过9.1 kHz后,功率谱线的抖动对功率谱线的峰值的贡献是次要的,这主要是由散射决定的.
图2 实验2中探针接收到的不同频率超强激光瞬态等离子体频谱图
Fig. 2 Power spectra of transient-plasma of extra-intense laser by probes in experiment 2
本文采用多光子非线性Compton散射模型瞬态等离子体频率响应特性进行了理论分析和实验研究,提出了将入射超强激光和多光子非线性Compton散射光作为产生等离子体碰撞频率的新机制,给出了电子碰撞频率的时空演化方程和实验结果.结果表明:与散射前相比,在4.17 kHz以下,功率谱线较平滑,且不同时刻抖动幅度不大,且频率降低了1.63 kHz.当频率达到6.12 kHz时,功率谱线出现了35 mW的大幅度抖动,且引起大幅抖动的频率降低了0.88 kHz,幅度增大了5 mW.当频率达到9.1 kHz时,功率谱线的峰值近似于全谱峰值,且产生该谱线峰值的频率降低了1.9 kHz.功率谱线主要是由4.17~9.1 kHz低频段决定的,且低频范围缩小了0.27 kHz.超过9.1 kHz后,主要是由散射决定的功率谱线抖动对功率谱线峰值的贡献是次要的.这主要是由于散射使等离子体的高频非线性成分增大,低频成分缩小,其中4.17~9.1 kHz低频中亦包含有散射贡献的缘故.
[1] Ratcliff P R, Rebe Mr, Cole M J,etal. Velocity thresholds for impact plasma production [J].AdvanceSpaceResearch, 1997, 20(8): 147.
[2] Ivanov M J, Terentieva L V. Soliton-like structures in dark matter [J].NuclearPhysics, 2003, B124(sI):148.
[3] Zhang X M, Shen B F, Yu M Y,etal. Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser [J].Phys.Plasma, 2007, 14 (11): 113108.
[4] Charles C, Jeremy C, Hai W,etal. Oh production by transient plasma and mechanism of flame ignition and propagation in quiescent methane-air mixtures [J].CombustionandFlame, 2008, 40 (8): 715.
[5] Tang E L, Zhang Q M, Zhang J. Premilinary study on magnetic induction intensity induced by plasma during hypervelocity impact [J].ChineseJournalofAeronautics, 2009, 22(4): 387.
[6] Tang E L, Zhang Q M, Zhang J. Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target [J].HighPowerLaserandParticleBeams, 2009, 21(2): 29(in Chinese)[唐恩凌, 张庆明, 张健. 高速碰撞LY12铝靶产生膨胀等离子体云的电导率测量[J]. 强激光与粒子束, 2009, 21(2): 297]
[7] Tang E L, Zhang Q M, Huang Z P. Electron temperature diagnosis of plasmas generated during hypervelocity impact [J].TransactionsofBeijingInstituteofTechnology, 2007, 27(5): 381(in Chinese)[唐恩凌, 张庆明, 黄正平. 超高速碰撞产生等离子体的电子温度诊断[J]. 北京理工大学学报, 2007, 27(5): 381]
[8] Umezu I, Takata M, Sugimura A,etal. Surface bydrogenation of silicon nanocrystallites during pulsed laser ablation of silicon target in bydrogen background gas [J].J.Appl.Phys., 2008, 103 (11): 114309.
[9] Zheng Z Y, Fan Z J, Xing J,etal. Target momentum measurement in laser plasma propulsion using two probe beams [J].HighPowerLaserandParticleBeams, 2012, 24(11): 2669(in Chinese)[郑志远, 樊振军, 邢杰, 等. 双束探测光测量激光等离子体动量[J]. 强激光与粒子束, 2012, 24(11): 2669]
[10] Tang E L, Yang M H, Xiang S H,etal. Spectral response characteristics of plasma generated by hypervelocity impact [J].HighPowerLaserandParticleBeams, 2011, 23(5): 1365(in Chinese)[唐恩凌, 杨明海, 相升海, 等. 超高速碰撞产生等离子体的频率响应特征[J]. 强激光与粒子束, 2011, 23(5): 136]
[11] Tang E L, Zhang Q M, Ma Y F,etal. Temporal and spatial distribution of particle density in expanding plasma cloud [J].HighPowerLaserandParticleBeams, 2012, 24(5): 1126(in Chinese)[唐恩凌, 张庆明, 马月芬, 等. 膨胀等离子体云的粒子密度时空分布[J]. 强激光与粒子束, 2012, 24(5): 1126]
[12] Tang E L, Zhang M, Wang M,etal. Temporal and spatial distribution of particle energy for plasma generated by hypervelocity impact [J].HighPowerLaserandParticleBeams, 2013, 25(11): 3025(in Chinese)[唐恩凌, 张庆明, 王猛, 等. 超高速碰撞产生等离子体云的粒子能量时空分布[J]. 强激光与粒子束, 2013, 25(11): 3025]
[13] Gao H L, Hao D S. Anew mechanism on scattering of 3D time-varying plasma [J].JournalofAtomicandMolecularPhysics, 2014, 31(5) : 759(in Chinese)[高海林, 郝东山. 超强激光照射三维时变等离子体散射新机制[J]. 原子与分子物理学报, 2014, 31(5): 759]
[14] Yu D C, Hao D S. Influences of Compton scattering on the propagation properties of sub-picosecond super-Gaussian pulse in plasma [J].OpticalTechnique, 2014, 40(5): 410(in Chinese)[禹定臣, 郝东山. Compton散射对等离子体中亚批秒超高斯脉冲传输特性的影响[J]. 光学技术, 2014, 40(5): 410]
[15] Liu J T, Hao D S. Influences of initial velocity of ion on plasma sheath thickness under Compton scattering [J].JournalofAtomicandMolecularPhysics, 2014, 31(3): 443(in Chinese)[刘经天, 郝东山. Compton散射下离子初始速度对等离子体鞘层厚度的影响[J]. 原子与分子物理学报, 2014, 31(3): 443]
[16] Gao H L, Pi X L, Hao D S. Influences of modulation instability on Compton scattering to linearly polarized laser pulse in relativistic plasma [J].NuclearFusionandPlasmaPhysics, 2014, 34(3): 214(in Chinese)[高海林, 皮小力, 郝东山. Compton散射对线偏振光在相对论等离子体中调至不稳定性的影响[J]. 核聚变与等离子体物理, 2014, 34(3): 214]
[17] Hao D S, Zhu J B. Influences of Compton scattering on modulation instability near zero dispersion in plasma [J].ActaPhotonicaSinica, 2014, 43(10): 1019002-1(in Chinese)[郝东山, 朱江波. Compton散射对等离子体零色散附近调至不稳定性的影响[J]. 光子学报, 2014, 43(10): 1019002-1 ]
[18] Hao D S, Jiang W J. Radiation damping effect in high power laser plasma under Compton scattering [J].LaserTechnology, 2014, 38(5): 688(in Chinese)[郝东山, 蒋文娟. Compton散射下强激光等离子体的辐射阻尼效应[J]. 激光技术, 2014, 38(5): 688]
[19] Yan X L, Hao D S. Influences of Compton scattering on the self-focusing of the intense laser pulse underdense plasma [J].OpticalTechnique, 2014, 40(1): 50(in Chinese)[闫喜亮, 郝东山. Compton散射对短脉冲强激光在次临界等离子体中自聚焦的影响[J]. 光学技术, 2014, 40(1): 50]
[20] Hao D S. Influences of Compton scattering to temporal evolution of plasma density in femto-second light filaments [J].ChineseJournalofLasers, 2014, 41(5): 0505002-1(in Chinese)[郝东山. 康普顿散射对飞秒光丝中等离子体密度时演特性的影响[J]. 中国激光, 2014, 41(5): 0505002-1]
[21] Kong Q, Zhu L J, Wang J X,etal. Electron dynamics in the extra-intense stationary laser field [J].ActaPhysicaSinica, 1999, 48 (4): 650(in Chinese)[孔青, 朱立俊, 王加祥, 等. 电子在超强激光场中的动力学特性[J]. 物理学报, 1999, 48 (4): 650]
Frequency response characteristics of transient-plasma of extra-intense laser under Compton scattering
MAO Jian-Jing, ZHANG Kai-Ping, HAO Dong-Shan
(College of Information Engineering, Zhengzhou Industrial Technology University, Xizheng 451150, China)
By using multi-photon nonlinear Compton scattering model and the means of experimental detection,the frequency response characteristics of transient-plasma of extra-intense laser were studied. A new mechanism on plasma impact frequency formed by the incident extra-intense laser and Compton scattering light was given,and the time and space evolution equation and experimental results on the electric impact frequency was given out. The results show that the power spectrum line under 4.17 kHz is milder than that before the scattering, the different time shaking extents are not big, and 1.63 kHz shaking frequencies are decreased. When the frequency is 6.12 kHz, a 35 mW shaking extent is produced in the power spectrum line, and 0.88 kHz shaking extent frequency is decreased, and 5 mW peak value is increased. When frequency is 9.7 kHz, the peak value of power spectrum line and all spectrum line peak values are almost matching, and 1.3 kHz frequency of the spectrum line peak value is decreased. 0.21 kHz power spectrum line produced by 4.17~9.7 kHz frequency spectrum is decreased. Over 9.7 kHz, the contribution on the power spectrum line shaking to the power spectrum line peak value is secondary. The causes may be that the high frequency nonlinear composition of plasma is increased by the scattering, the low frequency composition is decreased, and also there is the scattering contribution in 4.17~9.7 kHz.
Extra-intense laser; Transient-plasma; Frequency response; Power spectrum line; Multi-photon nonlinear Compton scattering
103969/j.issn.1000-0364.2015.12.016
2014-11-20
河南省基础与前沿技术研究资助项目(092300410227)
毛建景(1980—),女,讲师,硕士,主要从事激光与信号传输研究.
郝东山. E-mail: haodongshan1948@126.com
O383; O531
A
1000-0364(2015)06-1008-05