李 文 崔文鹏 王瑞霞 齐永辉 张秋颖 孙 晶
(吉林大学白求恩第二医院肾病内科,吉林 长春 130021)
有文献报道〔1~6〕,氧化应激在糖尿病及其并发症的发病中具有重要作用。机体内抗氧化防御系统Nrf2-ARE信号通路的激活,可以促使一系列第Ⅱ阶段解毒及抗氧化酶基因表达上调,从而对氧化应激损伤的器官起到保护作用〔7~9〕。
糖尿病主要包括1型糖尿病和2型糖尿病。1型糖尿病也被称为胰岛素依赖性糖尿病,目前普遍认为其发病机制由于自身免疫调节的失衡,从而出现免疫介导的对胰岛β细胞的选择性破坏〔10,11〕。相比之下,2型糖尿病在临床中更为常见,它是遗传、环境、行为等多种因素相互作用的结果〔12~14〕。无论何种类型的糖尿病,随着病情的发展均会出现各种急、慢性并发症。由于不良生活方式及饮食习惯的存在,糖尿病的发病率日益增长〔15〕。目前2型糖尿病因其发病率、死亡率均较高,已经成为全球性健康问题之一〔16〕。因此,对于每一位临床及科研工作者来说,揭示并阐明糖尿病或糖尿病并发症的发病机制,使人们能更有针对性的对其进行治疗有重要意义。
无论是实验性还是临床性研究,越来越多的研究表明:高血糖症、氧化应激与糖尿病并发症之间存在紧密联系,而氧化应激在糖尿病并发症的病因中起着举足轻重的作用〔1~6〕。近年来随着研究的深入,发现活性氧不仅可参与正常的细胞内信号通路,同时也可促进细胞毒性的产生〔17〕。因此,抗氧化剂似乎是预防或治疗氧化损伤的一种有效方法。据报道,已有维生素E等外源性抗氧化剂被用于治疗人类心血管及肾脏疾病,虽然有些研究取得了一定的成果〔18,19〕,但关于外源性抗氧化化合物对减少人类糖尿病并发症的研究多以失败而告终〔20~23〕。为此,发现并激活或上调内源性的抗氧化剂可能是预防或治疗糖尿病及其并发症更有效的方法。
活性氧作为有氧代谢的副产物可持续不断地产生。其可以对DNA、蛋白质和不饱和脂质造成化学损伤,可导致细胞死亡,促进许多病理过程的发展〔24,25〕。生理条件下,人体氧化还原反应处于相对稳定地平衡状态,机体通过抗氧化防御系统可以将其有效清除。当活性氧的产生超出抗氧化防御系统能力的清除时,便会出现氧化应激。长期氧化应激的存在,会使与之密切相关的疾病随之发生。
机体内存在有高度调节能力的抗氧化防御系统,其中包括对氧化还原敏感的核因子E2相关因子2(Nrf2)-抗氧化反应元件(ARE)通路。随着研究的不断深入,越来越多的研究证实:Nrf2-ARE通路在抗氧化应激过程中有重要作用〔7~9〕。
Nrf2属于帽“N”领(CNC)亚家族的一员,是一种亮氨酸拉链型转录因子〔26,27〕。作为氧化还原敏感性转录因子,其在细胞核中发挥生物效应。Nrf2主要通过结合在第Ⅱ阶段解毒和抗氧化酶的启动子区域的抗氧化反应元件,从而起到促进抗氧化基因表达的上调的作用〔28〕。
生理条件下,Nrf2与一种细胞骨架相关的肌动蛋白Kelchlike ECH-相关蛋白1(Keap1)紧密结合在一起,从而被锚定在细胞质中〔29〕。与此同时,Keap1充当Cullin-3与泛素化E3的基板适配器,形成Cul-E3泛素化连接酶复合体。这一复合体能增强Nrf2的泛素化,进而促进蛋白酶体对其的降解作用〔30,31〕。
Keap1蛋白中包含有几个活性半胱氨酸残基,它们作为细胞内氧化还原状态的感受器,可充当Nrf2的负调节〔32〕。当暴露于各种内源性或外源性活性氧分子中时,Keap1蛋白中的活性半胱氨酸残基结构被改变,导致Nrf2从Keap1/Nrf2复合体中解离或者诱导Keap1发生构象变化,使新合成的Nrf2免于被蛋白酶体降解,从而促进Nrf2由细胞质向细胞核的转移〔33,34〕。在核内,Nrf2与其他的转录因子(如小的Maf蛋白)形成异二聚体,促进Nrf2结合到位于启动子区域的Nrf2靶基因(如顺式调节因子ARE或亲电子)反应元件上,增加第Ⅱ阶段解毒及抗氧化酶〔如谷胱甘肽S-转移酶(GST)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)、NAD(P)H:醌氧化还原酶-1(NQO1)和血红素加氧酶-1(HO-1)等〕基因的表达〔35,36〕。
2型糖尿病主要好发于老年人群,随着我国老年人口总数日益增长,其在国内的患病人数及患病率也逐渐增加。糖尿病并发症累计全身多个器官,许多糖尿病患者最后死于其并发症。Nrf2-ARE信号通路并不仅依靠上调某单一的抗氧化酶,而是通过Nrf2的核转移导致一系列抗氧化酶的共同上调。因此,该信号通路引起了人们对于抗氧化研究的极大兴趣。许多研究致力于发现或挖掘Nrf2的小分子活化剂,如萝卜硫素、白藜芦醇、姜黄素、肉桂醛及MG-132等。值得欣喜的是:在初期的动物实验中这些小分子活化剂已被证实可以直接或间接的激活Nrf2-ARE信号通路,从而引起多个抗氧化酶基因表达上调,对遭受氧化应激损伤的重要器官(如心脏和肾脏等)具有保护作用〔37~43〕。虽然目前的研究多数还停留在初级的动物实验阶段,离真正运用还有相当漫长的路要走,但这也给无数临床或基础的科研工作者提供了前行的动力。相信通过大家的不懈努力,能使这一发现尽快造福于患者。
1 Brown WV.Microvascular complications of diabetes mellitus:renal protection accompanies cardiovascular protection〔J〕.Am J Cardiol,2008;102:10-3.
2 Wu J,Mei C,Vlassara H,et al.Oxidative stress-induced JNK activation contributes to proinflammatory phenotype of aging diabetic mesangial cells〔J〕.Am J Physiol Renal Physiol,2009;297:F1622-31.
3 Brownlee M.Biochemistry and molecular cell biology of diabetic complications〔J〕.Nature,2001;414(6865):813-20.
4 Evans JL,Goldfine ID,Maddux BA,et al.Oxidative stress and stress-activated signaling pathways:a unifying hypothesis of type 2 diabetes〔J〕.Endocr Rev,2002;23(5):599-622.
5 Forbes JM,Coughlan MT,Cooper ME.Oxidative stress as a major culprit in kidney disease in diabetes〔J〕.Diabetes,2008;57:1446-54.
6 Gnudi L.Cellular and molecular mechanisms of diabetic glomerulopathy〔J〕.Nephrol Dial Transplant,2012;27(7):2642-9.
7 Nguyen T,Sherratt PJ,Pickett CB.Regulatory mechanisms controlling gene expression mediated by the antioxidant response element〔J〕.Annu Rev Pharmacol Toxicol,2003;43:233-60.
8 Alam J,Cook JL.Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway〔J〕.Curr Pharm Des,2003;9:2499-511.
9 Kong AN,Owuor E,Yu R,et al.Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element(ARE/EpRE)〔J〕.Drug Metab Rev,2001;33:255-71.
10 Atkinson MA,Eisenbarth GS.Type 1 diabetes:new perspectives on disease pathogenesis and treatment〔J〕.Lancet,2001;58:221-9.
11 Eisenbarth GS.Update in type 1 diabetes〔J〕.Clin Endocrinol Metab,2007;92:2403-7.
12 Chen L,Magliano DJ,Zimmet PZ.The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives〔J〕.Nat Rev Endocrinol,2012;8:228-36.
13 Ripsin CM,Kang H,Urban RJ.Management of blood glucose in type 2 diabetes mellitus〔J〕.Fam Physic,2009;79(1):29-36.
14 Rother KI.Diabetes treatment-bridging the divide〔J〕.N Engl J Med,2007;356(15):1499-501.
15 Chamnan P,Simmons RK,Forouhi NG,et al.Incidence of type 2 diabetes using proposed HbA1c diagnostic criteria in the EPIC-Norfolk cohort:implications for preventive strategies〔J〕.Diabetes Care,2011;34:950-56.
16 Chaturvedi N.The burden of diabetes and its complications:trends and implications for intervention〔J〕.Diabetes Res Clin Pract,2007;76(Suppl 1):3-12.
17 Burton GJ,Jauniaux E.Oxidative stress〔J〕.Best Prac Res Clin Obst Gynaecol,2011;25(3):287-99.
18 Barbosa FT,Radaeli RF,Cavanal MF,et al.Effect of Dalpha-tocopherol on tubular nephron acidification by rats with induced diabetes mellitus〔J〕.Med Biol Res,2005;38(7):1043-51.
19 Kim SS,Galaher DD,Csallany AS.Vitamin E and probucol reduce urinary lipophilic aldehydes and renal enlargement in streptozotocin-induced diabetic rats〔J〕.Lipids,2003;35(11):37.
20 Alpers CE,Hudkins KL.Mouse models of diabetic nephropathy〔J〕.Curr Opin Nephrol Hypertens,2011;20:278-84.
21 Valk EJ,Bruijn JA,Bajema IM.Diabetic nephropathy in humans:pathologic diversity〔J〕.Curr Opin Nephrol Hypertens,2011;20:285-9.
22 Cai L.Diabetic cardiomyopathy and its prevention by metallothionein:experimental evidence,possible mechanisms and clinical implications〔J〕.Curr Med Chem,2007;14:2193-203.
23 Lee HB,Yu MR,Yang Y,et al.Reactive oxygen species regulated signaling pathways in diabetic nephropathy〔J〕.Soc Nephrol,2003;14:S241-245.
24 Taniyama Y,Griendling KK.Reactive oxygen species in the vasculature:molecular and cellular mechanisms〔J〕.Hypertension,2003;42:1075-81.
25 Griendling KK,Sorescu D,Ushio-Fukai M.NAD(P)H oxidase:role in cardiovascular biology and disease〔J〕.Circ Res,2000;86:494-501.
26 Itoh K,Igarashi K,Hayashi N,et al.1995.Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins〔J〕.Mol Cell Biol,1995;15:4184-93.
27 Moi P,Chan K,Asunis I,et al.Isolation of NF-E2-related factor 2(Nrf2),a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region〔J〕.Proc Natl Acad Sci,1994;91:9926-30.
28 Mann GE,Rowlands DJ,Li FY,et al.Activation of endothelial nitric oxide synthase by dietary isoflavones:role of NO in Nrf2-mediated antioxidant gene expression〔J〕.Cardiovasc Res,2007;75:261-74.
29 Hayes JD,McMahon M.NRF2 and KEAP1 mutations:permanent activation of an adaptive response in cancer〔J〕.Trends Biochem Sci,2009;34(4):176-88.
30 Motohashi H,Yamamoto M.Nrf2-Keap1 defines a physiologically important stress response mechanism〔J〕.Trends Mol Med,2004;10:549-57.
31 Kim HJ,Vaziri ND.Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure〔J〕.Renal Physiol,2010;298:662-71.
32 Miyata T,Takizawa S,van Ypersele de Strihou C.Hypoxia 1 intracellular sensors for oxygen and oxidative stress:novel therapeutic targets〔J〕.Am J Physiol Cell Physiol,2011;300(2):c226-31.
33 Wakabayashi N,Dinkova-Kostova AT,Holtzclaw WD,et al.Protection against electrophile and oxidant stress by induction of the phase 2 response:fate of cysteines of the Keap1 sensor modified by inducers〔J〕.Proc Natl Acad Sci,2004;101:2040-5.
34 Chartoumpekis DV,Kensler TW.New player on an old field;the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome〔J〕.Curr Diabetes Rev,2013;9:137-45.
35 Min KJ,Kim JH,Jou I,et al.Adenosine induces hemeoxygenase-1 expression in microglia through the activation of phosphatidylinositol 3-kinase and nuclear factor E2-related factor 2〔J〕.GLIA,2008;56(9):1028-37.
36 Kalayarasan S,Prabhu PN,Sriram N,et al.Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats〔J〕.Eur Pharmacol,2009;606(1-3):162-71.
37 Cui WP,Bai Y,Miao X,et al.Prevention of diabetic nephropathy by sulforaphane:possible role of Nrf2 upregulation and activation〔C〕.Oxidative Medicine and Cellular Longevity,2012.
38 Bai Y,Cui WP,Xin Y,et al.Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation〔J〕.J Mol Cell Cardiol,2013;57:82-95.
39 Miao X,Bai Y,Su W,et al.Sulforaphane prevention of diabetes-induced aortic damage was associated with the upregulation of Nrf2 and its downstream antioxidants〔J〕.Nutr Metab,2012;9(1):84.
40 Ungvari Z,Bagi Z,Feher A,et al.Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2〔J〕.Am J Physiol Heart Circ Physiol,2010;299(1):18-24.
41 Palsamy P,Subramanian S.Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling〔J〕.Biochim Biophys Acta,2011;1812(7):719-31.
42 Cui WP,Li B,Bai Y,et al.Potential role for Nrf2 activation in the therapeutic effect of MG132 on diabetic nephropathy in OVE26 diabetic mice〔J〕.Am J Physiol,2013;304(1):87-99.
43 Wang Y,Sun W,Du B,et al.Therapeutic effect of MG132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities:roles of Nrf2 and NF-kappaB〔J〕.Am J Physiol,2013;304(4):567-78.