汪丽菁 吕航 程向东
外源性microRNA跨物种应用研究进展
汪丽菁 吕航 程向东
microRNAs(miRNAs)[1]是在生物体中发现的一类具有调控功能的非编码RNA,其大小长约20~25个核苷酸。成熟的miRNAs是由较长的初级转录物经过一系列核酸酶的剪切加工而产生的,随后组装进RNA诱导的沉默复合体,通过碱基互补配对的方式识别目的mRNA,并根据互补程度的不同指导沉默复合体降解目的mRNA或者阻遏目的mRNA翻译,进而影响相应蛋白表达,最终实现对生物体生理机能的调控作用,如已有证据表明,在多种肿瘤样本的致瘤部位,某些抑癌基因的miRNA显著上调,而癌基因的miRNA含量则显著低于正常[2]。
原先认为,miRNA是内源性调控作用。但是近几年的研究发现,miRNA的调控功能,不仅局限于生物体内,而且在寄生物与宿主之间也广泛存在[3]。Stern-Ginossar 等[4]发现,人巨细胞病毒编码的miRNA—hcmv-miR-UL112在病毒感染过程中特异地下调了主要组织相容性复合物I相关B链(MICB)的表达,减少其与NK细胞激活受体(NKG2D)的结合,并降低NK细胞的杀伤能力,从而导致宿主致病。Weiberg A等[5]发现灰霉菌能通过分泌小RNA进入植物内部,从而抑制植物的免疫功能;大肠杆菌的小RNA-OxyS和DsrA通过调控che-2和F42G9.6基因表达分别引起线虫化学感觉行为受损和寿命缩短[6]。人们开始意识到,寄生物能够通过miRNA影响宿主生命周期,导致宿主致病。同时,宿主也可以通过miRNA反向调控寄生物的生命周期。人MiR-122通过影响cyclin G1/p53通路对HBV病毒复制起调控作用[7],但同时miR-122也会与HCV mRNA 5’非编码区相互作用引起HCV病毒增殖[8]。感染水疱性口炎病毒(VSV)的小鼠通过表达miR-24和miR-93锚定VSV的L蛋白和P蛋白基因,抑制VSV增殖[9];镰刀细胞病患者的红细胞通过表达miR-451和let-7i,靶向作用恶性疟原虫的mRNA,抑制其生长[10]。最新的研究表明,外源性miRNA的影响,不仅局限于宿主与寄生物之间,而且可以通过摄入外源性miRNA对机体产生影响。Zhang等[11]于2012年首次报道在人体血液中检测出大米MiR-168a,并调控人低密度脂蛋白受体衔接蛋白1基因(LDLRAP1)。Zhou等[12]还发现,稳定存在于中药金银花汤剂中的金银花miRNA,可以通过小鼠灌胃方式进入小鼠循环系统,并有效抑制小鼠体内的流感病毒A。同时,如其他来源的乳制品中,现也发现部分miRNA不会因为工业加工过程而降解,并且依然可以被人体摄入和吸收,最终可在人体血液中被检测出其存在[13]。以往这些研究发现,不仅打破了外源性miRNA会被机体核酸酶降解而失去调控能力的结论,并且给外源性miRNA的应用提供更广阔的临床研究价值。尤其是摄入性获取外源性miRNA的研究验证,对中国传统中药药理的作用机制研究具有十分深远的影响,同时为癌症等多基因疾病的治疗,提供了一个新的、具有发展潜力的治疗手段和方法。
miRNA可作用于胞质[14],且具有稳定性高[15,16]、多靶点等特点,这更易作用于靶基因。且与shRNA和siRNA相比,外源性miRNA是最有可能实现不同物种之间的多基因调控[17]。但如何将外源miRNA有效转运至靶细胞,通过细胞膜,并释放作用于靶基因仍然是一个科学难题。由于病毒载体的安全性问题,目前开发的RNA治疗方案多采用siRNA导入细胞胞质,沉默目的基因。而miRNA因为调控基因网络的作用,逐渐成为新的研究热点。现已可通过人工合成miRNA的方式干预mRNA的表达[18]。目前开展的以外源miRNA作为治疗的技术基础,基本与siRNA类似,即通过脂质体或大分子载体方式,将miRNA转运至靶细胞胞质。但在此基础上已经有了新的技术进展。
2.1 脂质纳米转运载体 阳离子脂质体作为核酸的载体已经在生物学实验中应用超过20多年。DOTMA是首次用于核酸输送载体的阳离子脂质之一[19]。后来发展了一类称为类脂的分子(lipidoids)。因其结构成分类似细胞膜,容易被内吞进入细胞,而<100nm的纳米脂质体不会被肺毛细血管滤过性截留,能顺利进入循环系统,到达目的组织细胞[20]。人工合成的MiR-34a[21],即临床药物MRX34(临床I期(NCT01829971)就是通过可电离化的直径在120nm左右的脂质体转运至体内[22],用于治疗肝癌和肝癌转移。并且采用类似的方法转运miR-34a能提高非小细胞肺癌患者对埃罗替尼的敏感性[23]。由于胞内的miRNA通常采取外泌体(exosomes)[24]、脱落囊泡(SVs)[25]等微囊经微囊泡(MVs)的主动分泌方式运转miRNA至胞外。并且发现MVs其表面蛋白分子能够作为靶细胞膜表面配体而靶向输送至受体细胞[26]。而且miRNA装载进入外泌体是一个受RNA诱导的沉默复合物(RISC)的特殊蛋白控制的选择性过程[27]。并且MVs能够够保护miRNA不被RNA酶降解[28]。Alvarez等[29]证实采用内源性外泌体作为靶向细胞载体的可能性,并成功治疗鼠阿尔茨海默病。Ohno S等[30]研究证实外泌体在体内可将抗肿瘤的miRNA转运至乳腺癌细胞,认为采用内源性MVs可作为药物传送系统的载体。在其他的研究中也发现,通过内源性MVs,被FITC标记的外源性MiR-150能够下调内皮细胞HMEC-1中的Myb基因,促进迁移的发生[31]。并且当蛋白转运抑制剂(brefeldin A)抑制血小板微粒释放后,原本能够正常转运至内皮细胞的荧光标记的miRNA和外源性线虫miRNA,被完全抑制。表明外源性miRNA是通过微囊运输到达靶细胞并发生作用的[25]。Zhu等[32]将靶向唾液酸粘附素和CD163受体的miRNA转入外泌体,并作用于猪肺泡巨噬细胞,有效抑制猪感染繁殖与呼吸综合征病毒(PRRSV)。因此,采用内源性囊泡作为载体运输外源miRNA,能够更加有效地到达靶细胞,发挥作用。将会是新的脂质体研究方向。
2.2 大分子转运载体 在脂质体的结构中,胆固醇的加入促进了核酸进入细胞,并且保护核酸不被核酸酶降解,同时胆固醇还能靶向运输至肾脏和肝脏[33],使人们认识到这类蛋白作为核酸靶向运输载体的可能性;另一个发现能够稳定miRNA结构的蛋白是Ago2,它使miRNA在循环系统中的存留时间延长,并能够转运至目的细胞[34,35]。这些非囊泡来源的大分子转运载体,丰富了外源性miRNA的转运方式。一些诸如适配子(Aptamer)和细胞穿透肽(CPPs)形式的转运载体被应用到小RNA转运技术上。(1)适配子:得益于近年来,配体指数富集系统进化技术(SELEX)的发展,适配子(Aptamer)能被广泛用于生物体内靶向特定细胞的特异性寡核苷酸转运载体[36]。具有高亲和力、特异性强结合寡核苷酸的Aptamer虽需经过多轮SELEX技术筛选,但其易合成修饰,低免疫原性和稳定性的“化学抗体”特点,使其能被应用于疾病的治疗和诊断[37]。目前已经筛选出许多小干扰RNA(siRNA)-aptamer能够进入靶定细胞,沉默目的基因,并且在体内和体外实验中已经获得证实[38~42]。miRNA-aptamer的研究[43]相对于siRNA-aptamer起步较晚,目前研究较多的有特异性结合与受体酪氨酸激酶致癌基因-Axl的GL21.T适配子,它能特异性结合合成的let-7g miRNA序列,抑制肿瘤[44]。(2)细胞穿透肽:人们自从20 世纪末发现具有自发跨膜转运进入细胞的某些蛋白质后,开始对此类蛋白质进行功能性研究。并通过对HIV-1病毒的Tat 蛋白以及果蝇的触角足同源异型结构域蛋白的片段研究,发现氨基酸残基数为10~16的多肽片段具有上述跨膜功能,并将这类肽称之为细胞穿透肽(CPPs)或蛋白质转导结构域(PTDs)。Bolhassani[45]在其综述中给出了已发现的主要CPPs的序列,虽然目前发现的CPPs数目不断增长,但对其细胞穿透功能研究仍主要集中在Tat肽以及触角足肽(penetratin)上。利用CPPs传递小RNA 的研究进展也多局限于Tat肽、MPG肽和多聚精氨酸肽。Zhang Y等[46]采用精氨酸多肽(R8)特异性结合反义MiR-21形成复合物,转运至胶质母细胞瘤细胞,使细胞迁移率下降25%。Cheng CJ等[47]采用pH诱导的跨膜多肽(pHIP)成功转运反义miR-155治疗弥漫性大B细胞淋巴瘤(DLBCL)。进一步证实了miR-155/DLBCL小鼠模型中采用这个治疗方法比当前临床采用的方法毒性更小。
内源性miRNA由于其稳定性和特异性,已经越来越成为疾病诊断和预测的重要生物标志物,而外源性miRNA由于其能够跨物种的作用形式,也越来越被人们所重视。并且由于miRNA低毒高效、多靶点的作用特点,一方面可用于多基因病(如癌症等)的治疗,不仅可以联合化疗药物,提高化疗药物敏感性,而且可能成为新的临床用药;另一方面由于新近发现植物miRNA能够通过胃肠道进入机体循环系统,不仅可以作为完善长期食用药食植物对机体免疫平衡调节的作用依据,也必将成为中药活性成分的新开发方向。然而,虽然外源性miRNA具有能够跨物种作用于机体的优势,但仍面临着诸多难题。虽然miRNA相对于siRNA作用更加长效,但如何保证所需外源性miRNA摄入后不被机体核酸酶降解,并有效转运到靶细胞,以及还未有长期使用的毒性学实验验证,都制约了外源性miRNA的开发。但可以预见,随着新的低毒性载体的研制,miRNA仍将成为核酸生物医学的新治疗手段。
1 Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nature reviews Genetics, 2007, 8(2):93~103.
2 Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO molecular medicine,2012, 4(3):143~159.
3 Aliyari R, Ding SW. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunological reviews, 2009, 227(1):176~188.
4 Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA. Science, 2007, 317(5836):376~381.
5 Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342(6154):118~123.
6 Liu H, Wang X, Wang HD, et al. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nature communications, 2012, 3:1073.
7 Wang S, Qiu L, Yan X, et al. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1)-modulated P53 activity. Hepatology, 2012, 55(3):730~741.
8 Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 2005, 309(5740):1577~1581.
9 Otsuka M, Jing Q, Georgel P, et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 2007, 27(1):123~134.
10 LaMonte G, Philip N, Reardon J, et al.Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell host & microbe, 2012, 12(2):187~199.
11 Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell research, 2012, 22(1):107~126.
12 Zhou Z, Li X, Liu J, et al.Honeysuckle-encoded atypicalmicroRNA2911 directly targets influenza A viruses. Cell research, 2015, 25(1):39~49.
13 Izumi H, Kosaka N, Shimizu T, et al.Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of dairy science, 2012, 95(9):4831~4841.
14 Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008, 132(1):9~14.
15 Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research, 2008, 18(10):997~1006.
16 Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different storage conditions. Molecules, 2014, 19(2):1568~1575.
17 Alvarez JP, Pekker I, Goldshmidt A, et al.Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. The Plant cell, 2006, 18(5):1134~1151.
18 Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular cell, 2002, 9(6):1327~1333.
19 Pack DW, Hoffman AS, Pun S, et al.Design and development of polymers for gene delivery. Nature reviews Drug discovery, 2005, 4(7):581~593.
20 Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for genebased therapy. Nature reviews Genetics, 2014, 15(8):541~555.
21 He L, He X, Lim LP, et al.A microRNA component of the p53 tumour suppressor network. Nature, 2007, 447(7148):1130~1134.
22 Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Frontiers in genetics, 2012, 3:120.
23 Zhao J, Kelnar K, Bader AG. In-depth analysis shows synergy between erlotinib and miR-34a. PloS one, 2014, 9(2):e89105.
24 Zampetaki A, Willeit P, Drozdov I, et al.Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovascular research, 2012, 93(4):555~562.
25 Gidlof O, van der Brug M, Ohman J, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 2013, 121(19):3908~3917, S3901~3926.
26 Ahmed KA, Xiang J. Mechanisms of cellular communication through intercellular protein transfer. Journal of cellular and molecular medicine, 2011, 15(7):1458~1473.
27 Gibbings DJ, Ciaudo C, Erhardt M, et al. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature cell biology, 2009, 11(9):1143~1149.
28 Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature cell biology, 2008, 10(12):1470~1476.
29 Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology, 2011, 29(4):341~345.
30 Ohno S, Takanashi M, Sudo K, et al.Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular therapy : the journal of the American Society of Gene Therapy, 2013, 21(1):185~191.
31 Zhang Y, Liu D, Chen X, et al.Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular cell, 2010, 39(1):133~144.
32 Zhu L, Song H, Zhang X, et al.Inhibition of porcine reproductive and respiratory syndrome virus infection by recombinant adenovirus- and/ or exosome-delivered the artificial microRNAs targeting sialoadhesin and CD163 receptors. Virology journal, 2014, 11(1):225.
33 Liu Y, Liggitt D, Zhong W, et al. Cationic liposome-mediated intravenous gene delivery. The Journal of biological chemistry, 1995, 270(42):24864~24870.
34 Guduric-Fuchs J, O'Connor A, Camp B, et al.Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC genomics, 2012, 13:357.
35 Xu J, Chen Q, Zen K, et al. Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. Journal of neurochemistry, 2013, 124(1):15~25.
36 Thiel KW, Giangrande PH. Intracellular delivery of RNA-based therapeutics using aptamers. Therapeutic delivery, 2010, 1(6):849-861. 37 Zhou J, Rossi JJ. Bivalent aptamers deliver the punch. Chemistry & biology, 2008, 15(7):644~645.
38 McNamara JO, 2nd, Andrechek ER, Wang Y, et al.Cell typespecific delivery of siRNAs with aptamer-siRNA chimeras. Nature biotechnology, 2006, 24(8):1005~1015.
39 Dassie JP, Liu XY, Thomas GS, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature biotechnology, 2009, 27(9):839~849.
40 Thiel KW, Hernandez LI, Dassie JP, et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic acids research, 2012, 40(13):6319~6337.
41 Zhou J, Neff CP, Swiderski P, et al. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Molecular therapy : the journal of the American Society of Gene Therapy, 2013, 21(1):192~200.
42 Herrmann A, Priceman SJ, Kujawski M, et al.CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. The Journal of clinical investigation, 2014, 124(7):2977~2987.
43 Esposito CL, Cerchia L, Catuogno S, et al.Multifunctional aptamermiRNA conjugates for targeted cancer therapy. Molecular therapy: the journal of the American Society of Gene Therapy, 2014, 22(6):1151~1163.
44 Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocrine-related cancer, 2010, 17(1): F19~36.
45 Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica et biophysica acta, 2011, 1816(2):232~246.
46 Zhang Y, Kollmer M, Buhrman JS, et al. Arginine-rich, cell penetrating peptide-anti-microRNA complexes decrease glioblastoma migration potential. Peptides, 2014, 58:83~90.
47 Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2014, doi: 10.1038/nature13905. Epub ahead of print.
浙江省医药卫生科技计划课题(2010KYA042)
310022 浙江省肿瘤医院超声科(汪丽菁)
31006 浙江省中医药大学附属第一医院(吕航 程向东)
*通讯作者