例谈高中数学教学中运用几何画板的体会

2015-01-13 23:05韩武红
课程教育研究·下 2014年6期
关键词:解析几何立体几何几何画板

韩武红

【摘要】利用"几何画板"研究函数的一些重要的性质,可以快速、精确、直观的显示出来,大大提高课堂效率。在高中立体几何教学中的应用,帮助学生理解和接受在平面中的三维空间图形,更能培养学生的空间想象能力。通过"几何画板"利用点的运动把几何图形生动的展现在学生面前,从而使学生直观看到的点的变化,也可以容易决定如何建立适当的平面直角坐标系。能进一步的培养学生利用数形结合来解决解析几何问题的能力。

【关键词】几何画板 研究函数 立体几何 解析几何 应用广泛

【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2014)6-0020-02

"几何画板"不仅是一个教学工具,更是学生学习数学的学习工具。随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革--用计算机辅助教学,并且越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。作为一名高中数学教师,我就自己这几年的教学经验,也想谈谈我的几点体会:运用"几何画板"一方面可以让学生形象直观地理解知识的发生和发展的各个环节,另一方面也可以让学生对动画演示过程产生比较深刻的印象,从而让学生能够很好地理解和掌握所学的知识,进一步培养学生分析问题、解决问题的能力。下面笔者结合教学实践就"几何画板" 在高中数学教学中的运用谈几点感受。

一、"几何画板"在高中代数教学中的应用

利用"几何画板"研究函数的一些重要的性质,如函数的单调性、奇偶性、最值;函数的图像和其反函数的图像之间的关系时,可以快速、精确、直观的显示出来,大大提高课堂效率。

在研究同类函数的性质时,我们通常要在同一个平面直角坐标系中,根据函数的解析式作出一个或多个函数的图像,通过函数图像的比较对学生进行函数性质的教学。如:我们在研究指数函数的图像和对数函数的图像之间的关系时,在传统教学中我们常在黑板上作出两个函数的图像,但在讲其图像关于直线对称时就比较困难了。然而利用"几何画板"即可以在同一个平面直角坐标系中作出它们的图像,同时还可以从指数函数上任取一点且作出该点关于直线的对称点,通过点的运动,观察点的运动,很容易发现点始终落在对数函数的图像上。这样使学生更清晰、更直观的得到指数函数的图像与对数函数的图像之间的关系:关于直线对称(既函数的图像与其反函数的图像关于直线对称的性质)。

"几何画板"除了在函数教学方面的应用以外,在高中代数的其他教学方面也有很多用途。如在解决方程和不等式的解的情况;在讲解数列的函数意义(即一个由离散点组成的函数图形)等等。

二、"几何画板"在高中立体几何教学中的应用

立体几何是以公理为基础的,根据图形的点、线、面的关系来研究三维空间图形的性质。在教学过程中我们通常是在一个平面中作出一个三维空间的图形,而由于多数学生缺乏丰富的空间想象能力,且依赖于二维平面图形的直观感,从而这部分学生往往把平面中的三维空间图形直观的看成二维的平面图形,但二维平面图形不可能成为三维空间图形的真实写照,因此在解决三维空间图形问题时往往门产生严重的偏差。为了引导学生走出这个误区,在以往的教学中,我们通常拿实物,对学生进行讲解,并逐步引导学生走近平面中的三维空间图形,逐步培养学生的空间想象能力,速度较慢。而利用"几何画板"可能通过拖运一些点使平面中的三维空间图形运动起来,从不同的角度把三维空间图形中各个元素之间的位置关系和度量关系生动的展现在学生的面前,从而把学生的直观认识和抽象认识巧妙的联系起来,这样更能帮助学生理解和接受在平面中的三维空间图形,更能培养学生的空间想象能力。从而使学生更能接受立体几何的知识,能更好的解决立体几何中的问题。

如在讲解正方体的作图过程中,我们可以利用"几何画板"对平面中所作的正方体进行旋转、翻转(拖运点),让学生清晰的看到现实生活中正方体在旋转、翻转过程中所能见到的面及面的视觉图形,这样更能帮助学生把自己的所见作到平面中去,正确的在平面中作出正方体的三维空间图形。

又如在讲解用分割三棱柱来求三棱锥的体积时,利用"几何画板"在三棱柱中作出割面的不同颜色,拖运其中被分割出来的三棱锥,从而把整个抽象的分割过程活灵活现的展现在学生的面前,再利用祖暅原理求出三棱锥的体积,避免了由于学生的空间想象能力的缺乏而不能理解,同时又培养了学生用分割几何体的方法来求其他几何体的体积的能力。

三、"几何画板"在高中平面解析几何教学中的应用

平面解析几何的实质是利用代数的方法来研究平面几何问题的一门数学学科,其中最基本的就是求点的轨迹问题。而求点的轨迹的基本思路和基本方法是:(1)根据已知条件,建立适当的平面直角坐标系;(2)在轨迹上任取一点,且设点的坐标;(3)列出相关的恒等式,并化简恒等式;(4)得到轨迹的方程。通过建立点的轨迹方程,把所研究的平面曲线转化为研究数的问题,再通过解决数的问题来解决平面曲线的问题,但是曲线与方程之间的对应关系比较抽象,学生不是很能理解,但通过"几何画板"利用点的运动把几何图形生动的展现在学生面前,从而使学生直观看到的点的变化,也可以容易决定如何建立适当的平面直角坐标系。

如在讲解求抛物线的标准方程时,我们在黑板上先作出一条定直线和一个定点,但要作出一系列到定直线的距离和到定点的距离相等的点,相当困难。而通过利用"几何画板"很容易的作出对应的一个动点,拖运点,并对点进行追踪就可以得到点的轨迹——抛物线(图五),并通过抛物线顶点的特殊位置,容易使学生在抛物线的顶点处建立平面直角坐标系,且对称轴为一条坐标轴,同时利用抛物线的定义很容易得到抛物线的标准方程。

又如在研究直线和半圆的交点的个数情况时。可以利用"几何画板"在一个平面直角坐标系中作出半圆,而直线是指在的取值不同时的一组平行直线,可以利用"几何画板"在轴上任取一点,且过点作出斜率为的直线(即直线),通过拖运点,就能得到一组动态的直线,同时使学生直观的看到直线与半圆的交点的变化情况,较容易得出结论。能进一步的培养学生利用数形结合来解决解析几何问题的能力。

总之,运用"几何画板"一方面可以让学生形象直观地理解知识的发生和发展的各个环节,另一方面也可以让学生对动画演示过程产生比较深刻的印象,从而让学生能够很好地理解和掌握所学的知识,进一步培养学生分析问题、解决问题的能力。

参考文献

[1]张金江.对信息技术与数学课程整合的一些新思考[J].电化教育研究,2006(1).

[2]郑彬华.英国中小学信息技术与科学课程整合的现状及启示[J].中小學信息技术教育,2003(9).

[3]李建敏.信息技术与课程整合的现状与对策[J].科教园地,2007(4).

猜你喜欢
解析几何立体几何几何画板
探究数学软件在解析几何教学中的应用价值
关于一个“绳瞬间绷直”问题的思考
几何画板辅助初中数学教学调查
高中数学立体几何教学实践研究
浅析几何画板在初中数学教学中的应用研究
浅析“向量法”在高中数学立体几何中的应用
探究式教学法在立体几何教学中的应用分析
几何画板在初中数学教学中的应用探究
用联系发展的观点看解析几何
例谈平面向量在解析几何中的应用