“电机控制技术”中异步电机数学模型的教学体会

2014-10-21 12:55王正齐
电子世界 2014年23期
关键词:非线性数学模型

【摘要】本文介绍了《电机控制技术》中关于异步电动机动态数学模型的几点教学体会。阐述了建立三相异步电机数学模型的方法步骤,数学模型为“动态”的内涵,“非线性、强耦合、多变量”的性质,以及如何验证模型的准确性等。本文有助于学生深入理解并掌握三相异步电机的动态数学模型。

【关键词】三相异步电动机;数学模型;非线性

引言

三相异步电动机的动态数学模型是《电机控制技术》这门课“交流调速系统”部分的重要内容,也是正确理解异步电动机高性能控制方法的基础所在。由于三相异步电机的动态数学模型是一个非线性、强耦合、多变量系统[1],因此这部分内容比较抽象和复杂,尤其是对于“动态”、“非线性”等概念,学生很难准确理解把握。作者在教学中总结了几点教学体会,供分享和交流。

1.遵循从一般到特殊的规律

如图1所示,对于旋转电机,通常采用动态耦合电路的分析方法,即将旋转电机看成是一组具有电磁耦合和相对运动的多绕组电路。分析的一般步骤为[2]:

①建立物理模型

②建立数学模型

③求解运动方程

④分析结果。

图1 旋转电机分析的一般步骤

图2 三相异步电机的物理模型

三相异步电机属旋转电机,因此对其分析也遵循这样的方法和步骤。首先根据三相异步电动机的结构,定子、转子两套绕组之间的关系,建立其物理模型,如图2所示;然后根据电路中基尔霍夫定律列出电压方程,根据电磁学定律列出磁鏈方程和转矩方程,根据牛顿力学定律列出转子运动方程;因列出的数学模型通常比较复杂,通常需采用坐标变换对其进行简化;最后对运动方程进行求解,并分析结果。

2.抓住关键所在,深刻理解“动态”的内涵

三相异步电机的数学模型,有“动态”和“稳态”之分。所谓“动态”模型,是指运动的、变化的、精确的模型。比如当异步电动机运行过程中,转子磁链、转子电阻等参数发生变化时,或者当负载转矩发生变化时,此时只能采用“动态”模型。而“稳态”模型,是指静止的、稳定的、近似的模型,比如三相异步电机的T型等效电路或简化稳态等效电路。很显然,三相异步电机的动态数学模型比稳态模型更为精确。

基于不同性质的数学模型,异步电机有不同的控制方法。基于异步电机稳态模型的控制方法有转速开环恒压频比控制、转速闭环转差频率控制等,适合于对调速性能要求不是太高的场合,如风机、水泵;基于异步电机动态模型的控制方法有按转子磁链定向的矢量控制、按定子磁链控制的直接转矩控制等,适合于对调速性能要求比较高的场合,如数控机床、机器人、电梯等。

3.深入理解“非线性、强耦合、多变量”的性质

满足叠加原理的系统为线性系统,反之为非线性系统。现实世界中,绝大部分系统属非线性系统。对于三相异步电动机这一非线性的系统,其非线性体现在旋转电动势、电磁转矩以及互感矩阵均包含变量。

耦合是指两个或两个以上的体系或两种运动形式间通过相互作用而彼此影响以至联合起来的现象。对于三相异步电动机,非线性耦合体现在电压方程、磁链方程与转矩方程中,故为强耦合的系统。而解耦就是用数学方法将两种运动分离开来处理问题。对于三相异步电动机这一非线性、强耦合系统而言,可以采用按转子磁链定向的矢量控制方法来实现电磁转矩和磁链之间的解耦控制,也可以基于非线性系统控制的理论,如反馈线性化、基于微分几何理论的精确线性化等方法来实现电磁转矩和磁链之间的解耦控制。

4.弄清数学模型与坐标变换之间的关系

三相异步电动机的原始的数学模型,基于三相静止坐标系(ABC坐标系),是一组复杂的非线性方程。为了分析问题的方便,通常利用坐标变换进行简化。进行坐标变换彼此等效的原则是磁动势守恒。常用的坐标变换有:三相坐标系和两相正交坐标系间的变换(3/2变换)、静止两相正交坐标系ɑβ到旋转正交坐标系dq的变换(2s/2r变换)等。图3所示为坐标变换关系图。

图3 坐标变换

经过从三相坐标系到两相坐标系的坐标变换,使得三相异步电动机的数学模型得到了简化。不同的坐标系上,对应着异步电动机不同的数学模型。控制系统中,通常采用异步电机在ɑβ坐标系、dq坐标系上的数学模型。

5.通过仿真建模验证模型的准确性

建立三相异步电机数学模型的目的在于应用。应教会学生利用Matlab/Simulink等仿真软件,对建好的电机数学模型进行仿真验证及分析。通过S-function或Simulink中搭模块的方法来建立异步电动机的各种数学模型。并在此基础上,对三相异步电机的起动、空载、加载运行等情形仿真模拟,从而验证所建数学模型的准确性。这也为基于动态模型的异步电机高性能控制方法,如矢量控制、直接转矩控制等的实现打下基础。

6.结论

本文详细介绍了“电机控制技术”中三相异步电机动态数学模型教学中的几点体会。包括从模型如何建立、化简,到对性质的理解,以及模型的验证等。不仅可以加深学生对三相异步电机动态数学模型本质的理解,而且教会了他们学习与思考的方法,有助于提高学生知识的综合应用能力。

参考文献

[1]阮毅,陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2009.

[2]汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2004.

[3]洪乃刚.电力电子、电机控制系统的建模和仿真[M].北京:机械工业出版社,2009.

作者简介:王正齐,博士,讲师,从事电机控制技术等方面的教学与研究工作。

猜你喜欢
非线性数学模型
活用数学模型,理解排列组合
浅谈构建数学模型,建立千以内数的数感
关于“酒后驾车”的数学模型建构
电子节气门非线性控制策略
基于SolidWorksSimulation的O型圈锥面密封非线性分析
对一个数学模型的思考
“费马点”数学模型在中考中的应用
四轮独立驱动电动汽车行驶状态估计
工业机器人铝合金大活塞铸造系统设计与研究
我国金融发展与居民收入差距非线性关系研究