方庆霞++何颖子
摘 要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。
关键词:代数 应用 线性 矩阵
中图分类号:O151.21 文献标识码:A 文章编号:1672-3791(2014)08(b)-0203-02
线性代数作为数学分支之一,是一门重要的学科。在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的这一数表实施变换,以此获得所需结论。近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。
1 矩阵在量纲化分析法中的应用
大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。
在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。由于量纲分析在运算上所涉及到的内容仅有代数,对此,若进行的试验十分昂贵,一般在实验前,人们倾向于事先在不同的假设下构建若干的相似模型,接着择优选择来进行实验。从侧面上来讲,这种方法对于部分常数还起到一定的压缩或者恢复的作用。
2 矩阵在生产总值和城乡人口流动分析中的应用
2.1 生产总值
3 结语
综上所述,经线性代数中矩阵在不同领域中应用案例的分析可知,矩阵所具潜能非常的大,伴随着信息技术水平的提高,网络技术的进步,矩阵的应用也会更加深入。由于各学科间、各行业之间的交叉变得越来越频繁,且界限也变得越来越模糊,在这种形势下,数学这门学科所具基础性也更为明显,对此,在学科研究与行业研究中融入数学,不仅可使研究更加具有说服力,同时还可使研究变得更为简洁,获得更为合理且科学的研究成果。
参考文献
[1] 侯祥林,张宁,徐厚生,等.基于动态设计变量优化方法的代数黎卡提方程算法与应用[J].沈阳建筑大学学报:自然科学版,2010,26(3):609-612.
[2] 黄玉梅,彭涛.线性代数中矩阵的应用典型案例[J].兰州大学学报:自然科学版,2009,45(Z1):123-125.
[3] 殷婷,王杰.多机系统Hamilton实现的Hessian矩阵正定判定与应用[J].电力系统保护与控制,2013(23):16-22.
[4] 朱瑞可,李兴源,赵睿,等.矩阵束算法在同步电机参数辨识中的应用[J].电力系统自动化,2012,36(6):52-55,84.endprint
摘 要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。
关键词:代数 应用 线性 矩阵
中图分类号:O151.21 文献标识码:A 文章编号:1672-3791(2014)08(b)-0203-02
线性代数作为数学分支之一,是一门重要的学科。在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的这一数表实施变换,以此获得所需结论。近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。
1 矩阵在量纲化分析法中的应用
大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。
在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。由于量纲分析在运算上所涉及到的内容仅有代数,对此,若进行的试验十分昂贵,一般在实验前,人们倾向于事先在不同的假设下构建若干的相似模型,接着择优选择来进行实验。从侧面上来讲,这种方法对于部分常数还起到一定的压缩或者恢复的作用。
2 矩阵在生产总值和城乡人口流动分析中的应用
2.1 生产总值
3 结语
综上所述,经线性代数中矩阵在不同领域中应用案例的分析可知,矩阵所具潜能非常的大,伴随着信息技术水平的提高,网络技术的进步,矩阵的应用也会更加深入。由于各学科间、各行业之间的交叉变得越来越频繁,且界限也变得越来越模糊,在这种形势下,数学这门学科所具基础性也更为明显,对此,在学科研究与行业研究中融入数学,不仅可使研究更加具有说服力,同时还可使研究变得更为简洁,获得更为合理且科学的研究成果。
参考文献
[1] 侯祥林,张宁,徐厚生,等.基于动态设计变量优化方法的代数黎卡提方程算法与应用[J].沈阳建筑大学学报:自然科学版,2010,26(3):609-612.
[2] 黄玉梅,彭涛.线性代数中矩阵的应用典型案例[J].兰州大学学报:自然科学版,2009,45(Z1):123-125.
[3] 殷婷,王杰.多机系统Hamilton实现的Hessian矩阵正定判定与应用[J].电力系统保护与控制,2013(23):16-22.
[4] 朱瑞可,李兴源,赵睿,等.矩阵束算法在同步电机参数辨识中的应用[J].电力系统自动化,2012,36(6):52-55,84.endprint
摘 要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。
关键词:代数 应用 线性 矩阵
中图分类号:O151.21 文献标识码:A 文章编号:1672-3791(2014)08(b)-0203-02
线性代数作为数学分支之一,是一门重要的学科。在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的这一数表实施变换,以此获得所需结论。近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。
1 矩阵在量纲化分析法中的应用
大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。
在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。由于量纲分析在运算上所涉及到的内容仅有代数,对此,若进行的试验十分昂贵,一般在实验前,人们倾向于事先在不同的假设下构建若干的相似模型,接着择优选择来进行实验。从侧面上来讲,这种方法对于部分常数还起到一定的压缩或者恢复的作用。
2 矩阵在生产总值和城乡人口流动分析中的应用
2.1 生产总值
3 结语
综上所述,经线性代数中矩阵在不同领域中应用案例的分析可知,矩阵所具潜能非常的大,伴随着信息技术水平的提高,网络技术的进步,矩阵的应用也会更加深入。由于各学科间、各行业之间的交叉变得越来越频繁,且界限也变得越来越模糊,在这种形势下,数学这门学科所具基础性也更为明显,对此,在学科研究与行业研究中融入数学,不仅可使研究更加具有说服力,同时还可使研究变得更为简洁,获得更为合理且科学的研究成果。
参考文献
[1] 侯祥林,张宁,徐厚生,等.基于动态设计变量优化方法的代数黎卡提方程算法与应用[J].沈阳建筑大学学报:自然科学版,2010,26(3):609-612.
[2] 黄玉梅,彭涛.线性代数中矩阵的应用典型案例[J].兰州大学学报:自然科学版,2009,45(Z1):123-125.
[3] 殷婷,王杰.多机系统Hamilton实现的Hessian矩阵正定判定与应用[J].电力系统保护与控制,2013(23):16-22.
[4] 朱瑞可,李兴源,赵睿,等.矩阵束算法在同步电机参数辨识中的应用[J].电力系统自动化,2012,36(6):52-55,84.endprint