曲舒宁 袁伟冬
摘要:如何能够让建筑在地震中保持安全,不受严重的损害,是当前建筑设计、施工必须要考虑的一个重大问题,特别是近年来地震频繁,人们的生命财产受到严重威胁,建筑安全则成了社会安全的一个重要影响因素,为保证建筑的抗震能力,设计人员必须要根据相关规范、标准,设计出具有相当抗震性能的房屋。本文对凝土结构抗震措施进行了分析。
关键词:凝土结构、抗震措施
中图分类号:TU37文献标识码: A
一、混凝土建筑抗震结构的分析
现代建筑结构形式主要是一个垂直于地面的竖向悬臂结构。其建筑的垂直荷载主要使建筑结构产生一个与地球引力相抗衡的轴心力;建筑的水平荷载使建筑结构产生弯矩。从建筑结构的受力特点进行分析可以看出:当建筑的垂直荷载方向保持不变时,随着建筑高度的不断增加仅仅会引起量的增加而已,而这时水平荷载的方向就可以来自四面八方;而当建筑为平均分布荷载时,建筑的高度就和弯矩呈现出二次方的变化。
再从建筑的侧移特点来看:建筑竖直方向荷载引起的建筑位移是比较小的,而水平方向的荷载作为平均分布的荷载时,建筑的高度就和其侧移呈现出四次方的变化。在混凝土建筑结构中,水平方向的荷载对建筑结构的影响是要远远大于垂直方向荷载对建筑结构的影响的,所以在进行混凝土建筑建设时,水平荷载是在进行结构设计时需要重点控制的影响因素,所以除了在保证建筑结构抵抗水平荷载产生的弯矩、剪力以及压、拉应力时,要具有较大的强度以外,还要保证建筑结构具有足够的刚度,使得建筑随着高度的不断升高,所引起的侧向变形能控制在结构规范允许的范围之内。
二、抗震设计关键点位
1、 结构层间屈服强度有明显的薄弱楼层
钢筋混凝土框架结构在整体设计上存在较大的不均匀性,使得这些结构存在着层间屈服强度特别薄弱的楼层。在强烈地震作用下,结构的薄弱层率先屈服,弹塑性变形急剧发展,并形成弹塑性变形集中的现象。如1976年唐山大地震中,13层蒸吸塔框架,由于该结构楼层屈服强度分布不均匀,造成第6层和第11层的弹塑性变形集中,导致该结构6层以上全部倒塌。
2、柱端与节点的破坏较为突出
框架结构的构件震害一般是梁轻柱重,柱顶重于柱底,尤其是角杜和边柱易发生破坏。除剪跨比小的短柱易发生柱中剪切破坏外,一般柱是柱端的弯曲破坏,轻者发生水平或斜向断裂;重者混凝土压酥,主筋外露、压屈和箍筋崩脱。当节点核芯区无箍筋约束时,节点与柱端破坏合并加重。当柱侧有强度高的砌体填充墙紧密嵌砌时,柱顶剪切破坏严重,破坏部位还可能转移至窗洞上下处,甚至出现短柱的剪切破坏。
3、砌体填充墙的破坏较为普遍
砌体填充墙刚度大而变形能力差,首先承受地震作用而遭受破坏,在8度和8度以上地震作用下,填充墙的裂缝明显加重,甚至部分倒塌,震害规律一般是上轻下重,空心砌体墙重于实心砌体墙,砌块墙重于砖墙。
三、建筑结构抗震设计的原则与方法
1、合理确定结构类型
在高层建筑中,其竖向荷载主要使结构产生轴向力,而水平荷载主要使结构产生弯矩、剪力,随着高度的增加,在竖向荷载不变的情况下,水平荷载作用力增加,此时竖向荷载所引起的建筑物侧移很小,但是水平荷载产生的侧移非常大,与高度成四次方变化。因此在高层建筑中,主要对水平荷载进行控制,在设计过程中,应该在满足建筑功能及抗震性能的前提下,选择切实可行的结构类型,使其具有良好的结构性能。另外,高层混凝土建筑中采取轻质材料的隔墙或者填充墙,可以控制结构的自身重量,减轻地震作用效应。
2、尽量设置多道抗震防线
对于每一次强震来说,往往伴有后续的若干次余震。因此,在建筑物的抗震结构设计中,如果只设置一道防线,那么经过首次破坏之后,可能由于余震的到来而再次损伤结构,最终造成倒塌事故。因此,在建筑物结构抗震设计时,应考虑若干个延性良好的分体系组成,一旦发生地震灾害,可形成有效的多重荷载传递路径,实现协同作用抵抗地震力;如果遇到第二水准烈度的地震,也就是在本地区抗震设防烈度时,结构就会进入到非弹性变形状态,可能对建筑物造成轻微的损坏,但是只需要简单修理甚至无需处理,就可以继续使用;因此,这就要求建筑结构必须具备强大的延性能力,不会出现难以修复的彻底性破坏;如果遇到第三设防烈度地震,也就是比本地区的抗震设防度中罕遇地震更高的情况下,虽然结构的破坏相对严重,但是不会造成结构倒塌,不会产生致命性破坏。
3、适当提升抗震能力
首先,如果发生强烈的地震作用,构件的强度安全储备大幅度下降,通过对构件实际承载力的分析,可客观判断薄弱部位;其次,应确保建筑楼层的承载力与计算弹性受力的比值保持均匀性变化,如果比值突然发生变化,可能会导致塑性集中变形;再次,避免地震力集中在局部位置,而对结构整体的承载力协调产生影响。
4、客观考虑位移问题
对于我国建筑设计来说,大多以承载力作为结构抗震设计的重点,设计人员采取线弹性方法,对小幅度震动情况下的结构变形、内力等进行分析,采取组合内力方法,对构件的截面进行验证,以此确保结构的可靠性、稳定性。然而,为了更好地针对位移状况变化引起的结构内力变化,在进行抗震设计时应该充分了解结构变形情况和配筋之间的关系,有针对性地采取设计方法,当建筑结构进入到抗震阶段后,对其变形进行精确分析与探讨。因此,除了计算小震阶段的情况以外,也要收集、统计、分析大震过程,实现更深层次的设计,必将成为未来发展方向。
四、抗震结构设计措施
1、抗震计算中的延性保证
从用楼层水平地震剪力与层间位移关系来描述楼层破坏的全过程可反映出,在抗震设防的第二、三水准时,框架结构构件已进入弹塑性阶段,构件在保持一定承载力条件下主要以弹塑性变形来耗散地震能量,所以框架结构需有足够的变形能力才不致抗震失效。试验研究表明,“强节点”、“强柱弱梁”、“强底层柱底”和“强剪弱弯”的框架结构有较大的内力重分布和能量消耗能力,极限层间位移大,抗震性能较好。规范通过构件承载力调整办法在一定程度上可以体现上述的强弱要求,且考虑了设计者的使用方便,采用地震组合内力的抗震承载力验算表达式,只是要对地震组合内力的设计值按有关公式进行相应的调整。
2、构造措施上的延性保证
四川大地震实践证明,当建筑结构在大地震中要求保持足够的承载能力来吸收进入塑性阶段而产生的巨大能量,因为此时的结构在震中进入到一个塑性阶段,容易产生变形。所以,根据这种特点和抗震的要求,多发地震的国家钢筋混凝土结构抗震设计均要求按延性框架结构进行设计,所以建筑结构的设计必须保证结构局部薄弱区的承载力与刚度,保证了建筑构造的整体性,延性的增加也就提高了变形能力,这样可以减少地震的破坏性,提高了建筑的抗震能力。
在结构布置上,按扩大了的柱端抗弯承载力进行设计,理论上可将柱屈服的可能性减少,保证“强柱弱梁”的设计原则。但因各种原因,如梁的实际抗弯承载力可能增大,高振型使柱中反弯点的转移等综合因素影响,要使柱中完全避免塑性铰是困难的,同时为实现“强剪弱弯”的要求,保证塑性铰区域的局部延性,也必须通过一定的构造措施来保证结构的延性,具体做法如下:
1) 限制轴压比与纵筋最大配筋率合理的受力过程可明显提高构件延性,为实现受拉钢筋的屈服先与受压区混凝土压碎的破坏形态,以提高塑性铰区域的转动能力,规范限制轴压比与纵筋最大配筋率,同时对混凝土受压区高度也提出相应要求。
2) 限制约束配筋和配筋形式。加密塑性铰区内的箍筋间距是很重要的一点,为保证“强节点”、“强柱弱梁”、“强底层柱底”和“强剪弱弯”的设计原则及塑性铰区域的局部延性,有必要加密塑性铰区内的箍筋间距,这不但可提高柱端抗剪能力,还可约束核心区内混凝土,对纵向钢筋提供侧向支承,防止大变形下纵筋压曲,从而改善塑性铰区域的局部延性。规范对约束区纵筋的最小直径、最大间距、塑性铰区域的最小长度等做出了详细的规定,并对箍筋肢距及箍筋形式提出了相应要求。
随着工程应用中箍筋强度和混凝土强度不断提高,对塑性铰区域内箍筋布置的要求是抗震构造措施的一个重要方面,这一情况将导致高强度混凝土中约束箍筋配筋率的减少而降低结构的设计可靠度,建议以配筋特征值代替原体积配筋率,同时鉴于约束配筋对柱端塑性铰区的良好约束作用,建议适当增大配筋量。
3)限制材料。拒绝豆腐渣工程的第一关就是把握好材料质量,材料延性对确保构件(结构)延性极为重要,为此规范对材料也提出了相应的限制,如保证钢筋强屈比、延伸率及混凝土强度等级等,同时对施工过程中可能出现的钢筋代换也提出了相应的限制。
结束语:随着我国高层建筑的高速发展,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给混凝土建筑结构分析和设计提出了更高的要求。但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,结构工程师在规划混凝土建筑结构时,应该充分研究以往地震对建筑作用的资料,采取合理有效的对策增强其结构的抗震性能,使其具有良好的抗震效果。
参考文献
[1]王继伟. 浅谈混凝土结构建筑抗震结构设计[J]. 科技创新导报,2012,33:48.
[2]陈天华. 高层混凝土建筑抗震结构设计探析[J]. 中国科技信息,2011,16:42.