解析几何中对称问题的解法探析

2014-08-20 17:49陈则候
新课程·中旬 2014年6期
关键词:对称点方程组评析

陈则候

一、关于点的对称问题

1.点关于点的对称

解决点点对称问题的关键是利用中点坐标公式,点P(a,b)关于点Q(m,n)的对称点为P′(2m-a,2n-b),中点问题也是其他对称问题的基础.

2.直线关于点的对称

例1.求直线l∶2x-3y+1=0关于点A(1,2)对称的直线l′的方程.

解法一:在直线l∶2x-3y+1=0上任取两点,如,M(1,1),N(-2,-1),則M、N关于点A的对称点M′,N′均在直线l′上,易知由两点式可得l′的方程为2x-3y+7=0.

解法二:∵l∶l′, ∴可设l′的方程为2x-3y+c=0(c≠1)

评析:解法一是取特殊点法;解法二是两直线关于点对称成平行直线,对称点到两直线的距离相等的几何性质.

二、关于直线的对称

1.点关于直线的对称

一般的点关于直线的对称问题

例2.求点P(4,0)关于直线l∶5x+4y+21=0的对称点P′.

解法:设P(4,0)关于直线l的对称点为P′(x′,y′),显然x′≠4,则PP′⊥l,线段PP的中点在直线l上.

2.直线关于直线的轴对称

一般的直线关于直线的对称问题

评析:此类型是直线与对称轴相交.四种解法都是常用方法,都注意利用几何性质.解法一是抓住了对称关系的转化(线关于线对称转化为点关于线对称);解法二抓住P与P′是一对“相关点”,利用“相关点”的性质求出直线l2上的动点的轨迹,这是求曲线关于直线对称方程的常用方法.

3.圆锥曲线关于直线的对称

例4.求圆C∶(x-2)2+(y+3)2=1关于直线l∶2x-y-1=0的对称圆方程.

评析:此题其实就是求圆心(2,-3)关于直线l∶2x-y-1=0的对称点问题.

例5.求抛物线y2=2x关于直线2x-y-1=0的对称抛物线方程.

总之,求对称问题归根结底都是点的对称,我们通常采用变量替换、数形结合等思想。求对称问题的通法是:(1)求对称点一般采用,先设对称点P(x,y),再利用中点坐标公式或垂直、平分等条件,列出x,y的方程组,解方程组所得的解就是对称点的坐标;(2)求对称直线一般是:先设对称曲线上任一点P(x,y),再利用求对称点的方程求出P点的对称点Q点坐标,将Q点坐标代入已知曲线方程中,所得的关于x,y的关系式,就是所求对称曲线的方程.

(作者单位 浙江省永嘉县上塘中学)

编辑 王团兰

猜你喜欢
对称点方程组评析
恰巧而妙 情切致美——张名河词作评析
深入学习“二元一次方程组”
评析复数创新题
九点圆圆心关于三边的对称点的性质
《二元一次方程组》巩固练习
一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离
线性代数中矩阵特征值的解析方法
食品安全公共管理制度的缺失与完善评析
利用对称求函数的解析式
非自治耗散Schrödinger-Boussinesq方程组紧致核截面的存在性