赵辉+王葳+贾树彪
摘要:酒精广泛应用于工业、医药、食品等领域,为适应酒精行业对应用、创新型人才的需求,必须建立以技术应用能力和基本素质为主线的教学新体系。本文以现代酒精行业的最新工艺为例,对酒精工艺学课程案例式教学进行了初步的研究和探索。
关键词:高校; 酒精工艺学 ; 案例式教学
中图分类号:G642.0文献标识码:A文章编号:1002-4107(2014)05-0007-02
酒精工业是我国改革开放以后有重大发展的一个产业,因为我国以可再生资源为原料的酒精开始进入新能源——燃料乙醇时代,这不仅可以充分利用可再生资源,还很好地解决了汽车尾气的环保问题。酒精工艺学是生物工程专业的一门重要的专业课,其工艺有一百多年的发展历史。由于生物工程技术突破性的发展,酒精工业将有一个更大的发展和技术进步。
培养大学生具有一定的技术思想和具体工艺的技术能力同等重要,传统教学比较侧重基础理论,与具体的技术思想和技术能力尚有较大的距离,不易增强学生投身具体产业的积极性,不利于激发大学生立志创业。为适应高素质、高水平的创新型人才的培养目标,改变教学中重理论轻实践、重知识轻素质的传统模式,就必须建立以技术应用能力和基本素质为主线的教学新体系。
案例教学是指教育者本着理论与实际有机整合的宗旨,遵循教学目的要求,以案例为基本素材,将学习者引入一个特定的真实工艺中,通过师生之间的双向互动,促使学生充分理解问题的复杂性、变化性、多样性等属性的重要教学形式。应用案例教学会使学生运用所学到基本理论知识和分析方法更好地联系实际,增强独立分析解决问题的能力。本文将对黑龙江大学现代酒精工艺学课程教学过程中的案例式教学进行探讨。
一、薄板换热器应用的案例式教学
酒精生产过程中使用换热器的工序较多,如液化、糖化工序中的液化醪冷却、糖化醪冷却,发酵工序中的发酵醪液冷却,蒸馏工序中发酵醪液的预热,酒精蒸气的冷却,DDGS生产过程中蒸发酒糟离心液的二次蒸气冷凝等都需要使用换热设备。但就其使用的换热器而言,过去的蛇管冷却器、喷淋冷却器、列管式冷却器现在基本不多见,近年发展起来的薄板换热器越来越受青睐。
板式换热器是以波纹板为传热介质的新型高效换热器,因其具有传热效率高、结构紧凑、不易结垢、可拆卸清洗、热损失极小、可利用低温热源等优点而被广泛用于轻工、食品、化工、制药、动力机械等部门。对于薄板换热器的教学以原黑龙江华润酒精有限公司的糖化醪工序使用螺旋板换热器在实际运行中的情况为例进行案例式教学。针对实际生产中该发酵系统出现的换热器物料出口温度偏高且进料不均,—直影响生产的稳定运行,结合当时企业的工艺改造进行课堂讨论,薄板换热器改造如图1、图2所示。
该工艺为180 m2的可拆式螺旋式换热器,进出口管径均为200 mm,所使用的糖化醪泵的最大流量为120 m3/h,因此糖化醪在换热器内的流速只有1.062 m/s,螺旋板换热器的理想流速为(1—2)m/s。由于两台换热器分料不均,其中必然有一台流速低于换热器内物料的最小流速,而使换热效率大大下降;另一台也达不到预期的效率。因此将A线两台螺旋板换热器的物料管路由并联改为了串联,效果明显。通过对实际工艺改造的讨论,学生进一步理解了换热器和糖化醪泵的匹配在实际生产中的重要性,特别是换热器连接的差异在实践中的重要性。
图1A线糖化醪用螺旋板换热器并联示意图
二、酵母连续培养的案例式教学
酵母连续培养是按顺流方式,在一只或几只顺次连接的罐中进行。它为连续发酵准备了种子扩培的必要条件。酵母糖化醪连续加入首罐,同时添加酵母种液。酵母糖化醪沿酵母扩培罐或罐组流动,酵母不断增殖,当醪液从酵母罐或酵母罐组最后一罐流出时,已是成熟的生产用酵母菌种,应及时送往发酵罐。
对于酵母连续培养工艺,流程式的文字教学不利于学生理解连续培养的本质,教学中结合俄罗斯酒精厂的酵母顺流式连续培养流程进行教学如图3所示,糖化醪进入贮罐,在其中55℃保温,继续糖化45—60min,用泵经换热器加热醪液至75—78℃并送入混合罐。在混合罐中保持20—30min,进行巴斯德灭菌,然后醪液被送入气液分离器,在这里产生的二次蒸气被喷嘴吸走,并与蒸汽混合后用于换热器的热源。消毒后的糖化醪用泵经换热器冷却至28—30℃,送往三个酵母增殖罐。然后再向三个酵母罐连续流加糖化醪。二级酵母罐接受来自一级酵母罐的酵母种液,同时流加30℃的糖化醪。学生主要针对三级不同酵母种子罐的连接、设计大小、培养液流速以及工艺过程进行讨论。
通过此案例教学,学生很好地掌握了酵母连续培养的基本工艺:按顺流方式,在一只或几只顺次连接的罐中进行,它为连续发酵准备了种子扩培的必要条件,酵母糖化醪连续加入首罐,同时添加酵母种液,酵母糖化醪沿酵母扩培罐或罐组流动,酵母不断增殖,当醪液从酵母罐或酵母罐组最后一罐流出时,已是成熟的生产用酵母菌种,应及时送往发酵罐。
图3酒精厂酵母顺流式连续培养流程
三、酒精连续发酵的案例式教学
连续发酵过程的实现是生物化学工程等多学科发展与结合的结果,连续发酵的设备运行稳定并提高其利用率。采用连续发酵法生产酒精,使设备始终处于发酵运行状态,通常需要20天对罐进行一次清洗、灭菌,极大地减少了发酵辅助时间,同时,连续发酵时,醪液进入发酵罐即进入主发酵期,可提高设备利用率20%以上。
对于酒精连续发酵工艺,教学中结合哈尔滨酿酒总厂五罐连续发酵生产流程进行讲解。如图4所示,把培养好的成熟酵母由酵母罐送入预发酵罐后,以5m3/h的流速将糖化醪液连续输入预发酵罐,至预发酵罐装满。待发酵罐中糖度达到8.0—9.0 BX,温度达到32—33℃时,以5m3/h的速度输入1号发酵罐,仍往预发酵罐以5 m3/h的流速输送糖化醪,同时向1号发酵罐以25m3/h的流速送入糖化醪。1号 罐满后,以30m3/h的速度输入2号罐,2号罐满后再以同样的速度输入3号、4号和5号发酵罐。当5号发酵罐中的成熟发酵醪液量达到60%—70%后按同样的速度送入蒸馏塔进行蒸馏。在发酵进程中,1号发酵罐内的温度控制在33—34℃;2号、3号发酵罐内温度控制在36—38℃;4号发酵罐内温度控制在33—34℃;5号发酵罐内温度控制在32—34℃。发酵罐中糖的消耗速度非常快,当3号发酵罐的外观糖已耗至零,5号发酵罐的外观糖为负值,发酵醪外观糖不再下降,酒精含量不再增加时为发酵成熟醪,可以输送至蒸馏塔中进行酒精蒸馏。发酵总时间为60—65h。
通过此案例教学,学生对连续发酵的真正含义以及连续发酵的优点有了新的认识:多个发酵罐在同一水平的基础上,罐之间的发酵醪液靠泵输送,罐之间醪液不仅可按顺序输送,每个罐还设计了自体循环,在自体循环中通过螺旋板换热器降温,这种顺序连接发酵罐方式,在实际运行中发酵效果很好,是彻底取代间歇发酵工艺的设备基础。
图4水平连接发酵系统
四、多塔差压蒸馏的案例式教学
对于差压蒸馏系统,教学中结合安徽特酒厂多塔差压蒸馏机组进行讲解。如图5所示,对于差压蒸馏的节能性、气相过塔和液相过塔的优缺点、塔形的选择、塔的规范尺寸、CO2分离器的大小、差压蒸馏与常压蒸馏的优缺点以及整个工艺过程进行探讨。通过此案例教学,学生对于多塔的含义、差压酒精蒸馏的意义、多塔蒸馏的工艺有了深刻的理解。
图5安徽特酒公司六塔差压蒸馏系统
石油资源日益枯竭不可避免,酒精作为可再生能源具有其他能源不可比拟的优势,酒精行业在未来将有更大的发展。为适应酒精行业对应用、创新型人才的需求,就必须改变酒精工艺学教学中重理论轻实践、重知识轻素质的传统模式,建立以技术应用能力和基本素质为主线的教学新体系,结合现代酒精行业的最新工艺进行案例式教学无疑是培养应用、创新型人才的捷径。
参考文献:
[1]贾树彪,李盛贤,吴国峰等.新编酒精工艺学[M].北京:化学工业出版社,2009:8.
[2]章克昌.酒精与蒸馏酒工艺学[M].北京:中国轻工业出版社,1995:1.
[3]刘罗华,汤琼.工科院校大学数学的案例式教学探讨[J].湖南工业大学学报,2010,(2).
收稿日期:2013-10-05
作者简介:赵辉(1971—),男,黑龙江肇东人,黑龙江大学生命科学学院副教授,工学博士,生物工程省级重点专业负责人,主要从事发酵工程研究。
基金项目:2011年黑龙江省高等教育教学改革工程项目(7971);2011年黑龙江大学高等教育教学改革工程项目“高校发酵工程类课群教学改革的研究与实践”(2011B026);2011年黑龙江省高等教育学会课题“高校生物工程专业工程类课程教学改革的研究与实践”(HGJXHB1110492)
摘要:酒精广泛应用于工业、医药、食品等领域,为适应酒精行业对应用、创新型人才的需求,必须建立以技术应用能力和基本素质为主线的教学新体系。本文以现代酒精行业的最新工艺为例,对酒精工艺学课程案例式教学进行了初步的研究和探索。
关键词:高校; 酒精工艺学 ; 案例式教学
中图分类号:G642.0文献标识码:A文章编号:1002-4107(2014)05-0007-02
酒精工业是我国改革开放以后有重大发展的一个产业,因为我国以可再生资源为原料的酒精开始进入新能源——燃料乙醇时代,这不仅可以充分利用可再生资源,还很好地解决了汽车尾气的环保问题。酒精工艺学是生物工程专业的一门重要的专业课,其工艺有一百多年的发展历史。由于生物工程技术突破性的发展,酒精工业将有一个更大的发展和技术进步。
培养大学生具有一定的技术思想和具体工艺的技术能力同等重要,传统教学比较侧重基础理论,与具体的技术思想和技术能力尚有较大的距离,不易增强学生投身具体产业的积极性,不利于激发大学生立志创业。为适应高素质、高水平的创新型人才的培养目标,改变教学中重理论轻实践、重知识轻素质的传统模式,就必须建立以技术应用能力和基本素质为主线的教学新体系。
案例教学是指教育者本着理论与实际有机整合的宗旨,遵循教学目的要求,以案例为基本素材,将学习者引入一个特定的真实工艺中,通过师生之间的双向互动,促使学生充分理解问题的复杂性、变化性、多样性等属性的重要教学形式。应用案例教学会使学生运用所学到基本理论知识和分析方法更好地联系实际,增强独立分析解决问题的能力。本文将对黑龙江大学现代酒精工艺学课程教学过程中的案例式教学进行探讨。
一、薄板换热器应用的案例式教学
酒精生产过程中使用换热器的工序较多,如液化、糖化工序中的液化醪冷却、糖化醪冷却,发酵工序中的发酵醪液冷却,蒸馏工序中发酵醪液的预热,酒精蒸气的冷却,DDGS生产过程中蒸发酒糟离心液的二次蒸气冷凝等都需要使用换热设备。但就其使用的换热器而言,过去的蛇管冷却器、喷淋冷却器、列管式冷却器现在基本不多见,近年发展起来的薄板换热器越来越受青睐。
板式换热器是以波纹板为传热介质的新型高效换热器,因其具有传热效率高、结构紧凑、不易结垢、可拆卸清洗、热损失极小、可利用低温热源等优点而被广泛用于轻工、食品、化工、制药、动力机械等部门。对于薄板换热器的教学以原黑龙江华润酒精有限公司的糖化醪工序使用螺旋板换热器在实际运行中的情况为例进行案例式教学。针对实际生产中该发酵系统出现的换热器物料出口温度偏高且进料不均,—直影响生产的稳定运行,结合当时企业的工艺改造进行课堂讨论,薄板换热器改造如图1、图2所示。
该工艺为180 m2的可拆式螺旋式换热器,进出口管径均为200 mm,所使用的糖化醪泵的最大流量为120 m3/h,因此糖化醪在换热器内的流速只有1.062 m/s,螺旋板换热器的理想流速为(1—2)m/s。由于两台换热器分料不均,其中必然有一台流速低于换热器内物料的最小流速,而使换热效率大大下降;另一台也达不到预期的效率。因此将A线两台螺旋板换热器的物料管路由并联改为了串联,效果明显。通过对实际工艺改造的讨论,学生进一步理解了换热器和糖化醪泵的匹配在实际生产中的重要性,特别是换热器连接的差异在实践中的重要性。
图1A线糖化醪用螺旋板换热器并联示意图
二、酵母连续培养的案例式教学
酵母连续培养是按顺流方式,在一只或几只顺次连接的罐中进行。它为连续发酵准备了种子扩培的必要条件。酵母糖化醪连续加入首罐,同时添加酵母种液。酵母糖化醪沿酵母扩培罐或罐组流动,酵母不断增殖,当醪液从酵母罐或酵母罐组最后一罐流出时,已是成熟的生产用酵母菌种,应及时送往发酵罐。
对于酵母连续培养工艺,流程式的文字教学不利于学生理解连续培养的本质,教学中结合俄罗斯酒精厂的酵母顺流式连续培养流程进行教学如图3所示,糖化醪进入贮罐,在其中55℃保温,继续糖化45—60min,用泵经换热器加热醪液至75—78℃并送入混合罐。在混合罐中保持20—30min,进行巴斯德灭菌,然后醪液被送入气液分离器,在这里产生的二次蒸气被喷嘴吸走,并与蒸汽混合后用于换热器的热源。消毒后的糖化醪用泵经换热器冷却至28—30℃,送往三个酵母增殖罐。然后再向三个酵母罐连续流加糖化醪。二级酵母罐接受来自一级酵母罐的酵母种液,同时流加30℃的糖化醪。学生主要针对三级不同酵母种子罐的连接、设计大小、培养液流速以及工艺过程进行讨论。
通过此案例教学,学生很好地掌握了酵母连续培养的基本工艺:按顺流方式,在一只或几只顺次连接的罐中进行,它为连续发酵准备了种子扩培的必要条件,酵母糖化醪连续加入首罐,同时添加酵母种液,酵母糖化醪沿酵母扩培罐或罐组流动,酵母不断增殖,当醪液从酵母罐或酵母罐组最后一罐流出时,已是成熟的生产用酵母菌种,应及时送往发酵罐。
图3酒精厂酵母顺流式连续培养流程
三、酒精连续发酵的案例式教学
连续发酵过程的实现是生物化学工程等多学科发展与结合的结果,连续发酵的设备运行稳定并提高其利用率。采用连续发酵法生产酒精,使设备始终处于发酵运行状态,通常需要20天对罐进行一次清洗、灭菌,极大地减少了发酵辅助时间,同时,连续发酵时,醪液进入发酵罐即进入主发酵期,可提高设备利用率20%以上。
对于酒精连续发酵工艺,教学中结合哈尔滨酿酒总厂五罐连续发酵生产流程进行讲解。如图4所示,把培养好的成熟酵母由酵母罐送入预发酵罐后,以5m3/h的流速将糖化醪液连续输入预发酵罐,至预发酵罐装满。待发酵罐中糖度达到8.0—9.0 BX,温度达到32—33℃时,以5m3/h的速度输入1号发酵罐,仍往预发酵罐以5 m3/h的流速输送糖化醪,同时向1号发酵罐以25m3/h的流速送入糖化醪。1号 罐满后,以30m3/h的速度输入2号罐,2号罐满后再以同样的速度输入3号、4号和5号发酵罐。当5号发酵罐中的成熟发酵醪液量达到60%—70%后按同样的速度送入蒸馏塔进行蒸馏。在发酵进程中,1号发酵罐内的温度控制在33—34℃;2号、3号发酵罐内温度控制在36—38℃;4号发酵罐内温度控制在33—34℃;5号发酵罐内温度控制在32—34℃。发酵罐中糖的消耗速度非常快,当3号发酵罐的外观糖已耗至零,5号发酵罐的外观糖为负值,发酵醪外观糖不再下降,酒精含量不再增加时为发酵成熟醪,可以输送至蒸馏塔中进行酒精蒸馏。发酵总时间为60—65h。
通过此案例教学,学生对连续发酵的真正含义以及连续发酵的优点有了新的认识:多个发酵罐在同一水平的基础上,罐之间的发酵醪液靠泵输送,罐之间醪液不仅可按顺序输送,每个罐还设计了自体循环,在自体循环中通过螺旋板换热器降温,这种顺序连接发酵罐方式,在实际运行中发酵效果很好,是彻底取代间歇发酵工艺的设备基础。
图4水平连接发酵系统
四、多塔差压蒸馏的案例式教学
对于差压蒸馏系统,教学中结合安徽特酒厂多塔差压蒸馏机组进行讲解。如图5所示,对于差压蒸馏的节能性、气相过塔和液相过塔的优缺点、塔形的选择、塔的规范尺寸、CO2分离器的大小、差压蒸馏与常压蒸馏的优缺点以及整个工艺过程进行探讨。通过此案例教学,学生对于多塔的含义、差压酒精蒸馏的意义、多塔蒸馏的工艺有了深刻的理解。
图5安徽特酒公司六塔差压蒸馏系统
石油资源日益枯竭不可避免,酒精作为可再生能源具有其他能源不可比拟的优势,酒精行业在未来将有更大的发展。为适应酒精行业对应用、创新型人才的需求,就必须改变酒精工艺学教学中重理论轻实践、重知识轻素质的传统模式,建立以技术应用能力和基本素质为主线的教学新体系,结合现代酒精行业的最新工艺进行案例式教学无疑是培养应用、创新型人才的捷径。
参考文献:
[1]贾树彪,李盛贤,吴国峰等.新编酒精工艺学[M].北京:化学工业出版社,2009:8.
[2]章克昌.酒精与蒸馏酒工艺学[M].北京:中国轻工业出版社,1995:1.
[3]刘罗华,汤琼.工科院校大学数学的案例式教学探讨[J].湖南工业大学学报,2010,(2).
收稿日期:2013-10-05
作者简介:赵辉(1971—),男,黑龙江肇东人,黑龙江大学生命科学学院副教授,工学博士,生物工程省级重点专业负责人,主要从事发酵工程研究。
基金项目:2011年黑龙江省高等教育教学改革工程项目(7971);2011年黑龙江大学高等教育教学改革工程项目“高校发酵工程类课群教学改革的研究与实践”(2011B026);2011年黑龙江省高等教育学会课题“高校生物工程专业工程类课程教学改革的研究与实践”(HGJXHB1110492)
摘要:酒精广泛应用于工业、医药、食品等领域,为适应酒精行业对应用、创新型人才的需求,必须建立以技术应用能力和基本素质为主线的教学新体系。本文以现代酒精行业的最新工艺为例,对酒精工艺学课程案例式教学进行了初步的研究和探索。
关键词:高校; 酒精工艺学 ; 案例式教学
中图分类号:G642.0文献标识码:A文章编号:1002-4107(2014)05-0007-02
酒精工业是我国改革开放以后有重大发展的一个产业,因为我国以可再生资源为原料的酒精开始进入新能源——燃料乙醇时代,这不仅可以充分利用可再生资源,还很好地解决了汽车尾气的环保问题。酒精工艺学是生物工程专业的一门重要的专业课,其工艺有一百多年的发展历史。由于生物工程技术突破性的发展,酒精工业将有一个更大的发展和技术进步。
培养大学生具有一定的技术思想和具体工艺的技术能力同等重要,传统教学比较侧重基础理论,与具体的技术思想和技术能力尚有较大的距离,不易增强学生投身具体产业的积极性,不利于激发大学生立志创业。为适应高素质、高水平的创新型人才的培养目标,改变教学中重理论轻实践、重知识轻素质的传统模式,就必须建立以技术应用能力和基本素质为主线的教学新体系。
案例教学是指教育者本着理论与实际有机整合的宗旨,遵循教学目的要求,以案例为基本素材,将学习者引入一个特定的真实工艺中,通过师生之间的双向互动,促使学生充分理解问题的复杂性、变化性、多样性等属性的重要教学形式。应用案例教学会使学生运用所学到基本理论知识和分析方法更好地联系实际,增强独立分析解决问题的能力。本文将对黑龙江大学现代酒精工艺学课程教学过程中的案例式教学进行探讨。
一、薄板换热器应用的案例式教学
酒精生产过程中使用换热器的工序较多,如液化、糖化工序中的液化醪冷却、糖化醪冷却,发酵工序中的发酵醪液冷却,蒸馏工序中发酵醪液的预热,酒精蒸气的冷却,DDGS生产过程中蒸发酒糟离心液的二次蒸气冷凝等都需要使用换热设备。但就其使用的换热器而言,过去的蛇管冷却器、喷淋冷却器、列管式冷却器现在基本不多见,近年发展起来的薄板换热器越来越受青睐。
板式换热器是以波纹板为传热介质的新型高效换热器,因其具有传热效率高、结构紧凑、不易结垢、可拆卸清洗、热损失极小、可利用低温热源等优点而被广泛用于轻工、食品、化工、制药、动力机械等部门。对于薄板换热器的教学以原黑龙江华润酒精有限公司的糖化醪工序使用螺旋板换热器在实际运行中的情况为例进行案例式教学。针对实际生产中该发酵系统出现的换热器物料出口温度偏高且进料不均,—直影响生产的稳定运行,结合当时企业的工艺改造进行课堂讨论,薄板换热器改造如图1、图2所示。
该工艺为180 m2的可拆式螺旋式换热器,进出口管径均为200 mm,所使用的糖化醪泵的最大流量为120 m3/h,因此糖化醪在换热器内的流速只有1.062 m/s,螺旋板换热器的理想流速为(1—2)m/s。由于两台换热器分料不均,其中必然有一台流速低于换热器内物料的最小流速,而使换热效率大大下降;另一台也达不到预期的效率。因此将A线两台螺旋板换热器的物料管路由并联改为了串联,效果明显。通过对实际工艺改造的讨论,学生进一步理解了换热器和糖化醪泵的匹配在实际生产中的重要性,特别是换热器连接的差异在实践中的重要性。
图1A线糖化醪用螺旋板换热器并联示意图
二、酵母连续培养的案例式教学
酵母连续培养是按顺流方式,在一只或几只顺次连接的罐中进行。它为连续发酵准备了种子扩培的必要条件。酵母糖化醪连续加入首罐,同时添加酵母种液。酵母糖化醪沿酵母扩培罐或罐组流动,酵母不断增殖,当醪液从酵母罐或酵母罐组最后一罐流出时,已是成熟的生产用酵母菌种,应及时送往发酵罐。
对于酵母连续培养工艺,流程式的文字教学不利于学生理解连续培养的本质,教学中结合俄罗斯酒精厂的酵母顺流式连续培养流程进行教学如图3所示,糖化醪进入贮罐,在其中55℃保温,继续糖化45—60min,用泵经换热器加热醪液至75—78℃并送入混合罐。在混合罐中保持20—30min,进行巴斯德灭菌,然后醪液被送入气液分离器,在这里产生的二次蒸气被喷嘴吸走,并与蒸汽混合后用于换热器的热源。消毒后的糖化醪用泵经换热器冷却至28—30℃,送往三个酵母增殖罐。然后再向三个酵母罐连续流加糖化醪。二级酵母罐接受来自一级酵母罐的酵母种液,同时流加30℃的糖化醪。学生主要针对三级不同酵母种子罐的连接、设计大小、培养液流速以及工艺过程进行讨论。
通过此案例教学,学生很好地掌握了酵母连续培养的基本工艺:按顺流方式,在一只或几只顺次连接的罐中进行,它为连续发酵准备了种子扩培的必要条件,酵母糖化醪连续加入首罐,同时添加酵母种液,酵母糖化醪沿酵母扩培罐或罐组流动,酵母不断增殖,当醪液从酵母罐或酵母罐组最后一罐流出时,已是成熟的生产用酵母菌种,应及时送往发酵罐。
图3酒精厂酵母顺流式连续培养流程
三、酒精连续发酵的案例式教学
连续发酵过程的实现是生物化学工程等多学科发展与结合的结果,连续发酵的设备运行稳定并提高其利用率。采用连续发酵法生产酒精,使设备始终处于发酵运行状态,通常需要20天对罐进行一次清洗、灭菌,极大地减少了发酵辅助时间,同时,连续发酵时,醪液进入发酵罐即进入主发酵期,可提高设备利用率20%以上。
对于酒精连续发酵工艺,教学中结合哈尔滨酿酒总厂五罐连续发酵生产流程进行讲解。如图4所示,把培养好的成熟酵母由酵母罐送入预发酵罐后,以5m3/h的流速将糖化醪液连续输入预发酵罐,至预发酵罐装满。待发酵罐中糖度达到8.0—9.0 BX,温度达到32—33℃时,以5m3/h的速度输入1号发酵罐,仍往预发酵罐以5 m3/h的流速输送糖化醪,同时向1号发酵罐以25m3/h的流速送入糖化醪。1号 罐满后,以30m3/h的速度输入2号罐,2号罐满后再以同样的速度输入3号、4号和5号发酵罐。当5号发酵罐中的成熟发酵醪液量达到60%—70%后按同样的速度送入蒸馏塔进行蒸馏。在发酵进程中,1号发酵罐内的温度控制在33—34℃;2号、3号发酵罐内温度控制在36—38℃;4号发酵罐内温度控制在33—34℃;5号发酵罐内温度控制在32—34℃。发酵罐中糖的消耗速度非常快,当3号发酵罐的外观糖已耗至零,5号发酵罐的外观糖为负值,发酵醪外观糖不再下降,酒精含量不再增加时为发酵成熟醪,可以输送至蒸馏塔中进行酒精蒸馏。发酵总时间为60—65h。
通过此案例教学,学生对连续发酵的真正含义以及连续发酵的优点有了新的认识:多个发酵罐在同一水平的基础上,罐之间的发酵醪液靠泵输送,罐之间醪液不仅可按顺序输送,每个罐还设计了自体循环,在自体循环中通过螺旋板换热器降温,这种顺序连接发酵罐方式,在实际运行中发酵效果很好,是彻底取代间歇发酵工艺的设备基础。
图4水平连接发酵系统
四、多塔差压蒸馏的案例式教学
对于差压蒸馏系统,教学中结合安徽特酒厂多塔差压蒸馏机组进行讲解。如图5所示,对于差压蒸馏的节能性、气相过塔和液相过塔的优缺点、塔形的选择、塔的规范尺寸、CO2分离器的大小、差压蒸馏与常压蒸馏的优缺点以及整个工艺过程进行探讨。通过此案例教学,学生对于多塔的含义、差压酒精蒸馏的意义、多塔蒸馏的工艺有了深刻的理解。
图5安徽特酒公司六塔差压蒸馏系统
石油资源日益枯竭不可避免,酒精作为可再生能源具有其他能源不可比拟的优势,酒精行业在未来将有更大的发展。为适应酒精行业对应用、创新型人才的需求,就必须改变酒精工艺学教学中重理论轻实践、重知识轻素质的传统模式,建立以技术应用能力和基本素质为主线的教学新体系,结合现代酒精行业的最新工艺进行案例式教学无疑是培养应用、创新型人才的捷径。
参考文献:
[1]贾树彪,李盛贤,吴国峰等.新编酒精工艺学[M].北京:化学工业出版社,2009:8.
[2]章克昌.酒精与蒸馏酒工艺学[M].北京:中国轻工业出版社,1995:1.
[3]刘罗华,汤琼.工科院校大学数学的案例式教学探讨[J].湖南工业大学学报,2010,(2).
收稿日期:2013-10-05
作者简介:赵辉(1971—),男,黑龙江肇东人,黑龙江大学生命科学学院副教授,工学博士,生物工程省级重点专业负责人,主要从事发酵工程研究。
基金项目:2011年黑龙江省高等教育教学改革工程项目(7971);2011年黑龙江大学高等教育教学改革工程项目“高校发酵工程类课群教学改革的研究与实践”(2011B026);2011年黑龙江省高等教育学会课题“高校生物工程专业工程类课程教学改革的研究与实践”(HGJXHB1110492)