冯宏业, 许英霞, 唐冬梅, 秦克章, 毛亚晶,3, 郭海兵, 三金柱
(1. 河北联合大学矿业工程学院地质系,河北唐山 063009;2. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029;3. 中国科学院新疆矿产资源研究中心,中国科学院新疆生态与地理研究所,新疆乌鲁木齐 830011;4. 新疆有色地勘局七〇四队,新疆哈密 839000)
东天山圪塔山口铜镍矿区镁铁-超镁铁质岩体橄榄石与尖晶石矿物学特征
冯宏业1,2, 许英霞1, 唐冬梅2, 秦克章2, 毛亚晶2,3, 郭海兵4, 三金柱4
(1. 河北联合大学矿业工程学院地质系,河北唐山 063009;2. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029;3. 中国科学院新疆矿产资源研究中心,中国科学院新疆生态与地理研究所,新疆乌鲁木齐 830011;4. 新疆有色地勘局七〇四队,新疆哈密 839000)
新近发现的圪塔山口含铜镍矿化镁铁-超镁铁质岩体位于新疆东天山黄山-镜儿泉铜镍矿带东端,共有4个镁铁-超镁铁质岩体,其中Ⅰ、Ⅱ、Ⅲ号岩体均见铜镍硫化物矿化,研究表明其形成时代(282Ma)及岩浆来源与东天山地区其它铜镍矿化镁铁-超镁铁质岩体一致。本文对主要造岩矿物橄榄石及副矿物尖晶石进行了显微镜下观察及电子探针分析,结果表明橄榄石Fo值介于83.1~86.6之间,平均85.2,为贵橄榄石,其Ni含量变化于1273×10-6~2719×10-6,平均1918×10-6;尖晶石根据铝含量的不同可以分为高铝和低铝两种。圪塔山口岩浆为地幔源区发生15.8%~18.8%的部分熔融,并有过剩橄榄石加入的玄武质岩浆经结晶分异作用形成的派生岩浆。对橄榄石分离结晶和硫化物熔离的计算模拟表明橄榄石结晶前,岩浆已经达到S饱和,结晶过程始终伴随硫化物的熔离作用,虽然早期结晶的橄榄石与硫化物熔体间发生了Fe-Ni交换,但仍有很好的铜镍成矿潜力。
东天山 圪塔山口镁铁-超镁铁质岩体 橄榄石 尖晶石 铜镍成矿潜力
Feng Hong-ye, Xu Ying-xia, Tang Dong-mei, Qin Ke-zhang, Mao Ya-jing, Guo Hai-bing, San Jin-zhu. Mineralogical characteristics of olivine and spinel from Getashankou Cu-Ni-bearing mafic-ultramafic intrusions in eastern Tianshan, NW China[J]. Geology and Exploration, 2014, 50(2):0346-0359.
新疆东部是我国重要的铜、镍、金矿集区,其中与铜镍硫化物矿床相关的镁铁-超镁铁质岩体聚集区—东天山地区康古尔-黄山韧性剪切带一直被地质学家和构造学家所关注(倪志耀,1992;杨前进等,1999;毛景文等,2002;秦克章等,2002,2003,2012;Qinetal., 2003,2011;Xuetal., 2003;王玉往等,2004,2009;孙赫等,2006,2008;三金柱,2007,2010;沈远超等,2007;唐冬梅等,2009;Tangetal., 2011,2012)。新疆有色地勘局704队新近发现的圪塔山口含硫化物镁铁-超镁铁质岩体位于图拉尔根大型铜镍钴矿床正东约18km处,沿康古尔-黄山深大断裂产出。研究表明圪塔山口成岩成矿时代为282Ma,与东天山其它岩体形成时代相近,其母岩浆来自亏损地幔的钙碱性玄武质岩浆,为东天山地区有利的成矿母岩浆(冯宏业等,已接收)。成矿元素Ni作为橄榄石与硫化物中的相容元素,可以利用Ni在二者中相容性的差异指示是否存在硫化物的熔离,因此橄榄石成分除用来探讨岩浆结晶演化过程外,还可以提供丰富的成矿信息(Lietal., 2007;秦克章等,2007)。尖晶石作为镁铁-超镁铁质岩中最早结晶的副矿物,其元素组成既可以指示其形成时的物理化学条件,也可以为研究岩石学与地球动力学提供有效的指示(Dicketal., 1984)。圪塔山口岩体尚未有系统的矿物学研究, 本文利用电子探针分析了圪塔山口镁铁-超镁铁质岩体中橄榄石及尖晶石的化学成分,为判定圪塔山口地幔源区的部分熔融程度和金属硫化物的深部熔离作用及其对成岩成矿的指示提供了矿物化学的依据。
图1 圪塔山口Cu-Ni硫化物矿化岩体大地构造位置与矿区地质简图(a据秦克章等,2002,2007,b据①)Fig.1 Map showing location and simplified geology of Getashankou Cu-Ni bearing intrusion ((a) after Qin et al., 2002, 2007, (b) after ① ) 1-吐哈盆地;2-博格达-哈尔里克岛弧;3-觉罗塔格构造带;4-康古尔-黄山韧性剪切带;5-中天山地块;6-镁铁-超镁铁质岩体;7-第四系;8-泥盆系大南湖组;9-花岗岩;10-闪长岩;11-辉长岩及编号;12-橄榄辉石岩+辉石橄榄岩;13-矿体;14-地质界线1-Tu-Ha basin; 2-Bogeda-Haerlike belt; 3-Jueluotage belt; 4-Kangguer-Huangshan ductile shear zone; 5-middle-Tianshan massif; 6-mafic-ultramafic intrusion; 7-Quaternary; 8-Da’nanhu Formation of middle Dovonian; 9-granite; 10-diorite; 11-gabbro and number;12-olivine websterite and lherzolite; 13-ore body; 14-geological boundary
圪塔山口大地构造位置上处于准噶尔与塔里木两大板块拼接所形成的康古尔-黄山碰撞对接带的东段,区域上属东天山铜、镍成矿带东端(图1a)。康古尔-黄山区域性深大断裂及韧性剪切带为镁铁-超镁铁质岩浆的就位与成矿提供了有利的导矿和容矿空间。
区域地层主要为古生界的石炭系和泥盆系,其次为中上元古界和新生界。中上元古界主要分布于中天山和北山地区,为一套变质碳酸盐岩-碎屑岩地层;泥盆系和石炭系大多分布于沙泉子断裂带以北,主要为一套海相火山喷发-沉积建造;新生界主要为陆相碎屑沉积物,广泛分布于区内低洼地带。区内岩浆岩发育,侵入岩以中酸性岩类为主,其次为基性、超基性岩类,多为华力西期产物。火山岩类以基性熔岩、中酸性熔岩及火山碎屑岩最为常见。
矿区出露地层主要为下泥盆统大南湖组和新生界(图1b)。大南湖组(D1d)地层分布在康古尔塔格-黄山断裂带北部,呈北东东向大面积展布,为一套海相火山喷发-沉积建造、火山碎屑沉积建造。新生界地层主要分布于工作区中部大沟及北西部洼地内。受区域性深大断裂的控制,矿区内断裂破碎带均沿北东东向分布,以强烈挤压、走滑兼韧性剪切为特征。矿区华力西期岩浆岩发育,沿北东向分布有一系列闪长岩、安山玢岩、花岗岩及4个镁铁-超镁铁质岩体(图1b)。
Ⅰ号岩体:地表露头长300m,宽100m,走向北东东、倾向南东,倾角65°~69°左右。地表出露岩性主要为石英闪长岩、闪长岩、角闪辉长岩、辉长岩、辉石橄榄岩,岩浆分异演化完全。地表球形风化发育,局部见有星点状孔雀石、和稀疏浸染状磁黄铁矿、黄铜矿。岩体与围岩界线清楚,接触带内局部可见细脉状的石英脉。
Ⅱ号岩体:长400m,宽10~40m,岩体走向约60°,倾向南,倾角45°~69°。地表平面呈环带状岩相分带:角闪辉长岩相-辉石橄榄岩相-橄榄辉石岩相-辉长岩相,相邻岩相间为渐变过渡接触,表现为分异演化完全。矿体位于岩体的中上部,主要赋存于辉石橄榄岩相及橄榄辉石岩相中。
Ⅲ号岩体:长约700m,宽5~36m,走向70°,倾向南东,倾角52°~67°,岩体上盘为辉长岩相,下盘为辉橄岩相,两岩相呈渐变过渡关系,岩性主要有角闪辉长岩及含长辉橄岩。见有大量黄褐色铁帽带及浸染状孔雀石,矿石大部分为星点状、浸染状-稠密浸染状、海绵陨铁结构的矿石,局部见贯入式块状矿石。
Ⅳ号岩体:长约420m,宽约100m,主要为辉长岩与角闪辉长岩,岩相相对单一,矿化程度低。根据造岩矿物粒度和风化程度,初步推测与其它岩体不是同一时期的产物。
圪塔山口岩体中的橄榄石主要存在于橄榄辉石岩相和辉石橄榄岩相中,根据这两种岩相中角闪石和斜长石含量的不同,又可分为含长角闪橄辉岩、含长橄辉岩、角闪橄辉岩、含长角闪辉橄岩、含长辉橄岩及角闪辉橄岩等。
辉石橄榄岩为黑褐色自形-半自形粒状结构,块状构造。橄榄石约占50%~75%,自形晶粒状-浑圆状,粒径0.1~4mm之间(图2a),橄榄石呈堆晶状(图2b)产出,成被辉石、角闪石、斜长石或硫化物包裹产出(图2c),堆晶状橄榄石多为自形晶,晶间充填有少量他形的斜长石、辉石及金属硫化物(图2b、d),被包裹者多为浑圆状。辉石约占15%~35%,角闪石与斜长石总和约占5%~15%不等,硫化物最多者可达3%~5%,此外尚有少量尖晶石、磷灰石等副矿物。
橄榄辉石岩为黑色半自形粒状结构,块状构造,所含矿物种类与辉石橄榄岩相基本一致,只是橄榄石和辉石的含量有所变化。橄榄石约占20%~40%,多为半自形-他形晶,粒径0.1~2mm之间,多为包橄结构,被辉石、斜长石等矿物包裹产出(图2e、f),局部可见堆晶结构。辉石含量增加至50%~60%。角闪石、斜长石、硫化物及副矿物尖晶石和磷灰石等的含量与辉石橄榄岩相当。
通过对Ⅱ号岩体不同岩相进行观察,发现有橄榄石包裹金属硫化物现象(图2g、h),各岩相蚀变较强,多数橄榄石部分或全部蚀变为蛇纹石或石棉(图2b、d、i),也可见少量新鲜的橄榄石(图2c)。尖晶石作为镁铁-超镁铁质岩中的副矿物主要存在于橄榄石内部及橄榄石间隙(图2i、j、k),少量存在于辉石颗粒内部,显微镜下观察发现尖晶石的形成至少可分为两期。部分尖晶石被磁铁矿包围,先形成的尖晶石反射色较低,后期磁铁矿围绕尖晶石生长,包裹先前形成的尖晶石,反射色相对较高(图2i、l)。
橄榄石和尖晶石的主量元素分析在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室完成,实验仪器为JXA8100电子探针分析仪,工作条件为:电压15kV,电流20nA,束斑直径3~5μm。
橄榄石分析结果见表1。由表1可知圪塔山口橄榄石的Fo值介于83.1~86.6之间,平均值85.2,为贵橄榄石。橄榄石中CaO含量介于0.12%~0.29%之间,平均0.18%。Ni含量变化于1273×10-6~2719×10-6之间,平均值为1918×10-6。圪塔山口岩体浅部各岩相的蚀变程度均较强,其造岩矿物难以进行电子探针分析,仅选取了深部新鲜的样品进行矿物成分分析。图3表明随着钻孔ZK602(110~160m)深度的增加,橄榄石中SiO2、FeO、MgO、Fo与Ni含量呈现出复杂的变化:SiO2、Fo、Ni依次出现先增加后减少,再增加再减少的趋势;FeO则出现先减少后增加、再减少再增加的趋势;而MgO的变化情况则更为复杂。同时图3还说明橄榄石中Ni含量的变化主要受橄榄石结晶的影响,先结晶的Fo值较高的橄榄石样品,其Ni含量也较高。通常一次岩浆侵位过程中由于结晶分异作用会使橄榄石、辉石等先结晶的矿物结晶堆积在岩浆底部,从而使得深部的岩相更富MgO和FeO,贫SiO2,浅部岩相中结晶的橄榄石MgO含量变低,而Fo值也相应有所降低。圪塔山口钻孔ZK602的橄榄石成分变化明显与一次岩浆侵位的特征不同,可能是同源岩浆多次脉动式上涌造成的。
尖晶石分析结果(表2)表明圪塔山口尖晶石中Cr2O3含量为22.51%~34.41%,平均值为29.90%;MgO含量在2.84%~13.16%之间,平均值为8.24%;TiO2含量为0.49%~8.46%,平均值为2.05%;FeOT含量介于27.41%~64.80%之间,平均值为39.87%;Cr#介于44.0~83.5之间,平均值为56.1;Mg#值介于14.6~58.4之间,平均值为38.4。Al2O3含量为2.98~25.29%,可分为高铝和低铝两个系列,低铝尖晶石的Al2O3值为2.98%~13.60%,具有明显高钛的特征,高铝尖晶石Al2O3含量为16.23%~25.29%,具有明显低的钛含量。说明尖晶石的形成可分为两期,这与显微镜下观察的现象一致。橄榄石中的尖晶石较辉石和角闪石中的尖晶石具有明显的富铝、低钛特征,可能是由于早期形成的尖晶石颗粒被岩浆携带到浅部岩浆房而多被结晶较晚的矿物包裹所致。
图2 圪塔山口橄榄石和尖晶石的显微照片与背散射图像Fig.2 Microscopic photos and backscattered images of olivine and spinel from the Getashankou intrusions a-橄榄石(正交光);b-堆晶状橄榄石间隙中充填硫化物(单偏光);c-辉石包裹橄榄石(正交光);d-橄榄石间隙的他形单斜辉石(正交光);e-辉石包裹橄榄石(背散射);f-长石包裹橄榄石(背散射);g-橄榄石包裹金属硫化物(正交光);h-橄榄石包裹金属硫化物(反射光);i-尖晶石被磁铁矿包裹(背散射图像);j-橄榄石边部的尖晶石(背散射图像);k-橄榄石内部的尖晶石(背散射图像);l-磁铁矿包裹尖晶石(反射光);Ol-橄榄石;Opx-斜方辉石;Cpx-单斜辉石;Serp-蛇纹石;Sp-尖晶石;Sul-硫化物;Amp-角闪石;Pl-斜长石;Apa-磷灰石;Mt-磁铁矿;Cp-黄铜矿;Po-磁黄铁矿a-olivine(crossed polar); b-sulfide filled in the gap of cumulus olivine(Plainlight); c-olivine package in pyroxene(crossed polar); d-xenomorphic clinopyroxene filled in the gap of olivine(crossed polar); e-olivine package in pyroxene(back scatterd image); f-olivine package in plagioclase(Back scatterd image); g-sulfide package in olivine(crossed polar); h-sulfide package in olivine(reflecting microscope); i-magnetite around spinel (back scatterd image); j-spinel in the edge of olivine (back scatterd image); k-spinel inside of olivine (back scatterd image); l-magnetite around spinel(Reflecting microscope); Ol-olivine; Opx-orthopyroxene; Cpx-clinopyroxene; Serp-serpentine; Sp-spinel; Sul-sulfide; Amp-amphibole; Pl-plagioclase; Apa-apatite; Mt-magnetite; Cp-chalcopyrite; Po-pyrrhotite
图3 圪塔山口ZK602孔超基性岩中橄榄石成分随深度变化曲线Fig.3 Compositional variation with depth of olivine in the ultramafic rock from drill hole ZK602 at Getashankou intrusions
电子探针分析只给出了FeOT的含量,Ballhausetal.(1991)认为电子探针数据计算的Fe3+含量是合理的,张炜斌等(2011)通过对比利用电子探针数据和电价平衡原理计算出的Fe3+含量和穆斯堡尔谱法测得的Fe3+含量基本一致。因此本文利用电价平衡原理计算反推的尖晶石中FeO含量应为16.74%~31.55%,平均为23.33%;Fe2O3含量介于9.70%~41.90%之间,平均值为18.38%。铬尖晶石分类图表明圪塔山口岩体中尖晶石主要为高铁铬铁矿、高铁富铬尖晶石及少量富铁铝铬铁矿和富铁富铬尖晶石(图4)。
图4 圪塔山口岩体铬尖晶石分类图(底图据朱福湘等,1985)Fig.4 Classification of Cr-spinel from Getashankou intrusions (base plot after Zhu et al., 1985)
4.1 母岩浆性质
地幔橄榄岩的Cr#值除了指示形成压力外,还可以用来指示地幔源区的熔融程度(Dick,etal., 1984)。本文采用公式F=10×ln (Cr#/100)+24来计算地幔源区部分熔融程度(Hellebrand,etal., 2001),其中F用%表示,Cr#=100×Cr3+/(Cr3++Al3+),适用于Cr#=10~60。去除圪塔山口Cr#>60的尖晶石数据后,得到地幔源区熔融程度F介于15.8%~18.8%之间(表2),平均值为17.1%。
图5 圪塔山口MgO-Fo-FeO图解(底图据张招崇等,2003)Fig. 5 Diagram of MgO-Fo-FeO of Getashankou intrusions (base plot after Zhang et al., 2003)
橄榄石中NiO含量也可以用来判断结晶分异作用并确定是否为原始玄武岩浆(Ring wood, 1956; Simkin, 1970; Sato, 1977)。与地幔岩平衡的原始玄武质岩浆结晶的橄榄石NiO含量为0.4%左右,伴随结晶分异作用,橄榄石中NiO含量将迅速减少(倪志耀,1991)。圪塔山口橄榄石的NiO含量为0.16%~0.35%,平均为0.24%,也说明其母岩浆为原始玄武质岩浆分异后导致NiO弱亏损的派生岩浆。
综上可知,圪塔山口岩体母岩浆为地幔源区发生15.8%~18.8%的部分熔融,并有过剩橄榄石加入而形成的玄武质岩浆经结晶分异作用形成的派生岩浆,其原始岩浆中MgO含量为11.84%,FeO含量为10.88%。东天山地区图拉尔根含铜镍岩体来源于亏损地幔发生约13%的部分熔融后形成的岩浆,其MgO含量为12.5%,FeO含量为12%;葫芦岩体来源于亏损地幔部分熔融形成的岩浆,其MgO含量为11%,FeO含量为10.5%(孙赫,2009)。黄山东岩体原始岩浆为玄武质岩浆,其MgO含量为10.3%,FeO含量为12.47%(倪志耀,1991;刘艳荣等,2012)。可见圪塔山口岩体具有与东天山地区其他镁铁-超镁铁质岩体一致的母岩浆,均为地幔源区部分熔融形成的玄武质岩浆,且其地幔部分熔融程度及原始岩浆中MgO和FeO含量相近。
4.2 橄榄石成因的意义
前人研究表明橄榄石的Fo值和Ni含量除受结晶分异作用的控制之外,还受到以下三个方面的影响:① 硫化物的熔离;② 橄榄石与硫化物熔体或晶间硅酸盐岩浆反应;③ 母岩浆中FeO、MgO的比值及Ni含量的变化(Lietal., 2004)。Ni在橄榄石与硅酸盐岩浆的分配系数为2.86~13.6(Takahashi,etal., 1978),一般取7(Lietal., 2004, 2007),Ni在硫化物与硅酸盐岩浆的分配系数为300~1000,一般取500(Barnesetal., 1999)。
计算可得圪塔山口橄榄石与熔浆间Fe-Mg分配系数Kd为0.67~0.86之间,平均为0.77,远大于正常橄榄石与熔浆间Fe-Mg分配系数(0.3~0.34),表明在橄榄石开始结晶时熔浆已经处于不平衡的状态,说明深部存在金属硫化物的熔离作用。镜下观察发现圪塔山口岩体中有橄榄石包裹硫化物现象(图2g、h),而橄榄石又是最先晶出的矿物,也说明在橄榄石结晶之前发生过金属硫化物的熔离作用。因此本文橄榄石Fo-Ni相关性的模拟计算主要考虑以下两种情况:(1) 橄榄石分离结晶过程中,岩浆始终保持S不饱和;(2) 橄榄石分离结晶之前,母岩浆已达到S饱和,结晶过程中伴随有硫化物熔体从硅酸盐岩浆中分离。
本文假设Ni在橄榄石与硅酸盐岩浆的分配系数为7,Ni在硫化物与硅酸盐岩浆的分配系数取500,则与Fo值86.6,Ni含量2459ppm的橄榄石平衡的岩浆(MgO含量11.84%,FeO含量10.88%)为圪塔山口岩体的母岩浆,其Ni含量为351ppm。通过计算模拟橄榄石分离结晶和硫化物熔离过程,得到如图6所示结果。图6中曲线AB为只有橄榄石结晶分异作用时,橄榄石中Ni含量随Fo值变化的曲线;曲线AC为橄榄石与硫化物以50∶1的比例从岩浆中分离时,橄榄石中Ni含量随Fo值变化的曲线。具体定量模拟计算的方法见李士彬等(2008)。
由图6可知,含长辉橄岩、含长角闪辉橄岩和角闪橄辉岩均落在曲线AB及AC上,反映了这些岩相中的橄榄石是从S饱和的岩浆中结晶出来的。而含长角闪橄辉岩和含长橄辉岩中的橄榄石成分投影点并不完全在橄榄石结晶和硫化物熔离的模拟曲线上,有相当数量的点位于只有橄榄石结晶的曲线AB上方,可能是已经结晶的橄榄石与熔离出的硫化物之间发生了Fe-Ni交换所致。相关研究表明,橄榄石和硫化物间的Fe-Ni交换反应在岩浆铜镍硫化物矿床中普遍存在,如Voisey’s Bay、金川、黄山东、喀拉通克和黄山西等(Lietal.,1999;李士彬,2008;邓宇峰等,2012;Gaoetal.,2012;毛亚晶等,已接收)。因此圪塔山口岩体具有形成铜镍硫化物矿床的良好潜力。
图6 圪塔山口岩体橄榄石中Fo-Ni的关系及其模拟计算结果Fig. 6 Model calculation of Ni content versus Fo content of olivine crystals from Getashankou intrusions
本文通过对圪塔山口镁铁-超镁铁质岩体中橄榄石与尖晶石的化学成分的研究,探讨了圪塔山口母岩浆的性质、岩浆结晶时的物理化学条件及橄榄石的成因意义,得到了以下主要认识:
(1) 圪塔山口橄榄石的Fo值介于83.1~86.6之间,平均85.2,为贵橄榄石,其Ni含量变化于1273×10-6~2719×10-6,平均为1918×10-6。钻孔ZK602中橄榄石的成分变化反映了圪塔山口岩体具有岩浆脉动式上侵成岩特征。
(2) 圪塔山口岩体母岩浆为地幔源区发生15.8%~18.8%的部分熔融,并有过剩橄榄石加入而形成的玄武质岩浆经结晶分异作用形成的派生岩浆。
(3) 圪塔山口橄榄石结晶前,岩浆已经达到S饱和,结晶过程始终伴随硫化物的熔离作用,虽然早期结晶的橄榄石与硫化物熔体间发生了Fe-Ni交换,但仍有很好的铜镍成矿潜力。
致谢 论文野外工作得到了新疆有色地勘局申茂德总工、704队雷刚副总工、康峰高工,圪塔山口(头苏泉)项目部杨阳、席斌斌、马新星、杨宝新等的支持与帮助,电子探针分析得到中国科学院地质与地球物理研究所毛骞高工、马玉光工程师的支持,在此一并致以衷心的感谢。
[注释]
① 新疆维吾尔自治区有色地质勘查局七○四队. 2011. 新疆哈密市头苏泉地区铜镍金矿普查年度总结报告(2011年度)[R].
Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 107: 27-40
Barnes S J, Maier W D. 1999. The fractionation of Ni, Cu and the nobel metals in silicate and sulfide liquids[A]. In R R Keays, C M Lesher and P C Lightfoot, (eds.). Dynamic processes in magmatic ore deposits and their application in mineral exploration[C]. Geological Association of Canada Short Course Notes, 13: 69-106
Deng Yu-feng, Song Xie-yan, Zhou Tao-fa, Yuan Feng, Chen Lie-meng, Zheng Wen-qin. 2012. Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances[J]. Acta Petrologica Sinica, 28(7): 2224-2234(in Chinese with English abstract)
Dick H, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 86: 54-76
Feng Hong-ye, Xu Ying-xia, Qin Ke-zhang, Tang Dong-mei, San Jin-zhu, Guo Hai-bing, Mao Ya-jing. 2013. Geochemical characteristics and zircon U-Pb geochronology of Getashankou mafic-ultramafic intrusions, eastern Tianshan[J]. Acta Petrologica Sinica, (Accepted) (in Chinese with English abstract)
Gao Jian-feng, Zhou Mei-fu, Lightfoot P C, Wang Yan, Qi Liang. 2012. Origin of PGE-poor and Cu-rich magmatic sulfides from the Kalatongke deposit, Xinjiang, Northwest China[J]. Economic Geology, 107(3): 481-506
Hellebrand E, Snow J E, Dick H J, Hofmann A W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites[J]. Nature, 410: 677-681
Li Chu-si, Naldrett A J. 1999. Geology and petrology of the Voisey's Bay intrusion: Reaction of olivine with sulfide and silicate liquids[J]. Lithos, 47(1-2): 1-31
Li Chu-si, Xu Zhang-hua, Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis[J]. Mineralium Deposita, 39(2): 159-172
Li Chu-si, Naldrett A J, Ripley E M. 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic-ultramafic intrusions: Principles, modeling and examples from Voisey’ Bay[J]. Earth Science Frontiers, 14(5): 177-183
Li Shi-bin, Hu Rui-zhong, Song Xie-yan, Chen Lie-meng, Shen Neng-ping. 2008. Sulfide separation control in Ni content of olivine in bearing-ore intrusion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(2): 146-152(in Chinese with English abstract)
Liu Yan-rong, Lv Xin-biao, Mei Wei, Hui Wei-dong. 2012. Compositions of olivine from the mafic-ultramafic complexs in eastern Tianshan, Xinjiang and implications to petrogenesus: Examples from Huangshandong and Tulargen complexs[J]. Geochimica, 41(1): 78-88(in Chinese with English abstract)
Mao Jing-wen, Yang Jian-min, Han Chun-ming, Wang Zhi-liang. 2002. Metallogenic systems of polymetallic copper and gold deposits and related metallogenic geodynamic model in eastern Tianshan, Xinjiang[J]. Earth Science-Journal of China University of Geosciences, 27(4): 413-424(in Chinese with English abstract)
Mao Ya-jing, Qin Ke-zhang, Tang Dong-mei, Xue Sheng-chao, Tian Ye, Feng Hong-ye. 2013. Multiple phases of magma emplacement and mineralization of eastern Tianshan, Xinjiang: Examplified by Huangshan Ni-Cu deposit[J]. Acta Petrologica Sinica, (Accepted)(in Chinese with English abstract)
Ni Zhi-yao. 1991. Chemical composition and petrologic significance of olivines in Huangshandong mafic-ultramafic complex in Hami, Xinjiang, China[J]. Mineralogy and Petrology, 11(3): 40-47 (in Chinese with English abstract)
Ni Zhi-yao. 1992. Origin of mafic-ultramafic complex: around Huangshan in Hami, Xinjiang[J]. Northwestern Geology, 13(2): 9-17(in Chinese with English abstract)
Qin Ke-zhang, Fang Tong-hui, Wang Shu-lai, Zhu Bao-qing, Feng Yi-min, Yu Hai-feng, Xiu Qun-ye. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan mountains, NW China[J]. Xinjiang Geology, 20: 302-308(in Chinese with English abstract)
Qin Ke-zhang, Peng Xiao-ming, San Jin-zhu, Xu Xing-wang, Fang Tong-hui, Wang Shu-lai, Yu Hai-feng. 2003. Types of major ore deposits, division of metallogenic belts in eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization[J]. Xinjiang Geology, 21(2): 143-150(in Chinese with English abstract)
Qin Ke-zhang, Zhang Lian-chang, Xiao Wen-jiao, Xu Xing-wang, Mao Jing-wen. 2003. Overview of major Au, Cu, Ni and Fe deposits and metalogenic evolution of the eastern Tianshan Mountains, Northwestern China[A]. in: J. W. Mao, R. J. Goldfarb , R. Seltmann, D. W. Wang, W. J. Xiao and C. Hart(eds.). Tectonic evolution and metallogeny of the Chinese Altay and Tianshan: London, natural history museum, International Symposium of the IGCP-473 project, IAGOD Guidebook Series 10[C]. Urumqi, Xinjiang, China, 227-249
Qin Ke-zhang, Ding Kui-shou, Xu Ying-xia, Sun He, Xu Xing-wang, Tang Dong-mei, Mao Qian. 2007. Ore prtential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 26(1): 1-14(in Chinese with English abstract)
Qin Ke-zhang, Su Ben-xun, Sakyi PA, Tang Dong-mei, Li Xian-hua, Sun He, Xiao Qing-hua, Liu Ping-ping. 2011. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-Bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a CA. 280Ma mantle plume[J]. American Journal of Science, 311: 237-260
Qin Ke-zhang, Tang Dong-mei, Su Ben-xun, Mao Ya-jing, Xue Sheng-chao, Tian Ye, Sun He, San Jin-zhu, Xiao Qing-hua, Deng Gang. 2012. The Tectonic setting, style, basic feature, relative erosion deee, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 45(4): 83-116(in Chinese with English abstract)
Ring wood A E. 1956. Melting relationship of Ni-Mg olivine and some geochemical implications[J]. Geochimica Cosmochimica Acta, (10): 297-303
Roeder P L, Emslie R F. 1970. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 29: 275-289
San Jin-zhu, Hui Wei-dong, Qin Ke-zhang, Sun He, Xu Xing-wang, Liang Guang-he, Wei Jun-ying, Kang Feng, Xiao Qing-hua. 2007. Geological characteristics of Tulargen magmatic Cu-Ni-Co deposit in eastern Xinjiang and its exploration direction[J]. Mineral Deposit, 26(3): 307-316(in Chinese with English abstract)
San Jin-zhu, Qin Ke-zhang, Tang Zhong-li, Tang Dong-mei, Su Ben-xun, Sun He, Xiao Qing-hua, Liu Ping-ping. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications[J]. Acta Petrologica Sinica, 26(10): 3027-3035(in Chinese with English abstract)
Sato H. 1977. Nickel content of basaltic magmas: identification of primary magma and a measure of the degree of olivine fractionation[J]. Lithos, (10): 113-120
Simkin T, Simth J V. 1970. Minor element distribution in olivine[J]. Journal of Geology, (78): 304-325
Shen Yuan-chao, Shen Ping, Liu Tie-bing, Li Guang-ming, Zou Wei-lei, Wan Ke-chu, Wu Yan-sheng. 2007. Geophsical prospecting and prognosis in the Jingerquan Cu-Ni deposit, Eastern Tianshan Mountains[J]. Geology and Prospecting, 43(2): 62-67(in Chinese with English abstract)
Sun He, Qin Ke-zhang, Li Jin-xiang, Xu Xing-wang, San Jin-zhu, Ding Kui-shou, Hui Wei-dong, Xu Ying-xia. 2006. Petrographic, petrogeochemical characteristics in the Tulargen Cu-Ni-Co sulfide deposit, Eastern Tianshan, and its tectonic background[J]. Geology in China, 33(3): 606-617(in Chinese with English abstract)
Sun He, Qin Ke-zhang, Li Jin-xiang, Tang Dong-mei, Fan Xin, Xiao Qing-hua. 2008. Constraint of mantle partial melting on PGE mineralization of mafic-ultramafic intrusions in eastern Tianshan: Case study on Tulargen and Xiangshan Cu-Ni deposits[J]. Acta Petrologica Sincia, 24(5): 1079-1086(in Chinese with English abstract)
Sun He. 2009. Ore-forming mechanism in conduit system and ore-bearing property evaluation for mafic-ultramafic complex in Eastern Tianshan, Xinjiang[D]. Beijing: Graduate University of Chinese Academy of Sciences: 1-262(in Chinese with English abstract)
Takahashi E. 1978. Partitioning of Ni2+, Co2+, Fe2+, Mn2+and Mg2+between olivine and silicate melts compositional dependence of partition coefficient[J]. Geochim. Cosmochim. Acta, 42(12): 1829-1844
Tang Dong-mei, Qin Ke-zhang, Sun He, Su Ben-xun, Xiao Qing-hua, Cheng Song-lin, Li Jun. 2009. Lithological chronological and geochemical characteristics of Tianyu Cu-Ni deposit, East Tianshan: Constraints on source and genesis of mafic-ultramafic intrusions in East Xinjiang[J]. Acta Petrologica Sinica, 25(4): 817-831(in Chinese with English abstract)
Tang Dong-mei, Qin Ke-zhang, Li Chu-si, Qi Liang, Su Ben-xun, Qun Wen-jun. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-untramafic intrusion in the Central Asian Oregenic Belt, NW China[J]. Lithos, (1-2): 84-98
Tang Dong-mei, Qin Ke-zhang, Sun He, Su Ben-xun, Xiao Qing-hua. 2012. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwestern China: Evidence from trace element geochemistry, Ro-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes[J]. Journal of Asian Earth Science, 49: 145-160
Wang Yu-wang, Wang Jing-bin, Wang Li-juan. 2004. REE characteristics of Cu-Ni sulfide deposits in the Hami area, Xinjiang[J]. Acta Petrologica sinica, 20(4): 935-948(in Chinese with English abstract)
Wang Yu-wang, Wang Jing-bin, Wang Li-juan, Long Ling-li. 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V)Ti-Fe ore district, Xinjiang[J]. Acta petrologica sinica, 25(4): 888-900(in Chinese with English abstract)
Xu Xing-wang, Ma Tian-lin, Sun Li-qian, Cai Xin-ping. 2003. Characteristics and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the eastern Tianshan Mountains, China[J]. Journal of Structural Geology, 25: 1901-1915
Yang Qian-jin, Feng Cheng-you, Ji Jin-sheng. 1999. The typomorphic characteristic of pyrite from Kanggultage gold deposit and the significance to Au ore prosperting[J]. Geology and Prospecting, 35(3): 21-23(in Chinese with English abstract)
Zhang Wei-bin, Zhang Dong-yang, Zhang Zhao-chong, Huang He, Zhao Li. 2011. Mineralogy of chromites in Mandaleke ophiolite of South Tian-shan Mountains and its geological implications [J]. Acta Petrologica et Mineralogica, 30(2): 243-258
Zhang Zhao-chong, Wang Fu-sheng. 2003. A method for identifying primary magma—Examples from picrite and alkali basalts[J]. Journal of Jilin university (Earth science edition), 33(2): 130-134. (in Chinese with English abstract)
Zhu Fu-xiang, Li Bing-lun, Yuan Qi-lin (translated). 1985. Chromite Deposits in Ural[M]. Beijing: Geological Publishing House: 12 (in Chinese)
[附中文参考文献]
邓宇峰, 宋谢炎, 周涛发, 袁 峰, 陈列锰, 郑文勤. 2012. 新疆东天山黄山东岩体橄榄石成因意义探讨[J]. 岩石学报, 28(7): 2224-2234
冯宏业, 许英霞, 秦克章, 唐冬梅, 郭海兵, 三金柱, 毛亚晶. 2013. 东天山圪塔山口镁铁-超镁铁质岩体地球化学及锆石U-Pb年代学[J]. 岩石学报(已接收)
李士彬, 胡瑞忠, 宋谢炎, 陈列锰, 沈能平. 2008. 硫化物熔离对岩浆硫化物含矿岩体中橄榄石Ni含量的影响—以金川岩体为例[J]. 矿物岩石地球化学通报, 27(2): 146-152
刘艳荣, 吕新彪, 梅 薇, 惠卫东. 2012. 新疆东天山镁铁-超镁铁岩体中橄榄石成分特征及其成因意义: 以黄山东和图拉尔根为例[J]. 地球化学, 41(1): 78-88
毛景文, 杨建民, 韩春明, 王志良. 2002. 东天山铜金多金属矿床成矿系统和成矿地球动力学模型[J]. 地球科学-中国地质大学学报,27(4): 413-424
毛亚晶, 秦克章, 唐冬梅, 薛胜超, 田 野, 冯宏业. 2013. 新疆东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用—以黄山西铜镍矿为例[J]. 岩石学报(已接收)
倪志耀. 1991. 新疆哈密黄山东镁铁-超镁铁杂岩体中橄榄石的化学成分及其岩石学意义[J]. 矿物岩石, 11(3): 40-47
倪志耀. 1992. 新疆哈密黄山东镁铁-超镁铁杂岩体成因探讨[J]. 西北地质, 13(2): 9-17
秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区演化与成矿地质背景研究[J]. 新疆地质, 20(4): 302-308
秦克章, 彭晓明, 三金柱, 徐兴旺, 方同辉, 王书来, 于海峰. 2003. 东天山主要矿床类型、成矿区带划分与成矿远景区优选[J]. 新疆地质, 21(2): 143-150
秦克章, 丁奎首, 许英霞, 孙 赫, 徐兴旺, 唐冬梅, 毛 骞. 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 26(1): 1-14
秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田 野, 孙 赫, 三金柱, 肖庆华, 邓 刚. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 45(4): 83-116
三金柱, 惠卫东, 秦克章, 孙 赫, 徐兴旺, 梁光河, 魏俊英,康 峰, 肖庆华. 2007. 新疆哈密图拉尔根全岩矿化岩浆铜-镍-钴矿床地质特征及找矿方向[J]. 矿床地质, 26(3): 307-316
三金柱, 秦克章, 汤中立, 唐冬梅, 苏本勋, 孙 赫, 肖庆华, 刘平平. 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 26(10): 3027-3035
沈远超, 申 萍, 刘铁兵, 李光明, 邹为雷, 万克初, 吴艳生. 2007. 东天山镜儿泉铜镍矿床成矿预测及EH4地球物理测量依据[J]. 地质与勘探, 43(2): 62-67
孙 赫, 秦克章, 李金祥, 徐兴旺, 三金柱, 丁奎首, 惠卫东, 许英霞. 2006. 东天山图拉尔根铜镍钴硫化物矿床岩相、岩石地球化学特征及其形成的构造背景[J]. 中国地质, 33(3): 606-617
孙 赫, 秦克章, 李金祥, 唐冬梅, 范 新, 肖庆华. 2008. 地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束—以图拉尔根和香山铜镍矿为例[J]. 岩石学报, 24(5): 1079-1086
孙 赫. 2009. 东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究[D]. 北京:中国科学院研究生院: 1-262
唐冬梅, 秦克章, 孙 赫, 苏本勋, 肖庆华, 程松林, 李 军. 2009. 天宇铜镍矿床的岩相学、年代学、地球化学特征: 对东疆镁铁-超镁铁质岩体源区和成因的制约[J]. 岩石学报, 25(4): 817-831
王玉往, 王京彬, 王莉娟. 2004. 新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义[J]. 岩石学报, 20(4): 935-948
王玉往, 王京彬, 王莉娟, 龙灵利. 2009. 新疆香山铜镍钛铁矿区两个镁铁-超镁铁岩系列及特征[J]. 岩石学报, 25(4): 888-900
杨前进, 丰成友, 姬金生. 1999. 东天山康古尔塔格金矿床黄铁矿的标型特征及找矿意义[J]. 地质与勘探, 35(3): 21-23
张炜斌, 张东阳, 张招崇, 黄 河, 赵 莉. 2011. 南天山满大勒克蛇绿岩铬铁矿矿物学特征及其意义[J]. 岩石矿物学杂志, 30(2): 243-258
张招崇, 王福生. 2003. 一种判别原始岩浆的方法—以苦橄岩和碱性玄武岩为例[J]. 吉林大学学报(地球科学版), 33(2): 130-134
朱福湘, 李秉伦, 袁启林(译). 1985. 乌拉尔铬铁矿[M]. 北京: 地质出版社: 12
Mineralogical Characteristics of Olivine and Spinel for Getashankou Cu-Ni-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan, NW China
FENG Hong-ye1,2, XU Ying-xia1, TANG Dong-mei2, QIN Ke-zhang2, MAO Ya-jing2,3,GUO Hai-bing4, SAN Jin-zhu4
(1. Department of Geology, Hebei United University, Tangshan, Hebei 063009; 2. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;3. Xinjiang Research Center for Mineral Resource,Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011; 4. No.704 Geological Party, Xinjiang Geology and Exploration Bureau for Nonferrous Metals, Hami, Xinjiang 839000)
The newly discovered Cu-Ni sulfide-bearing mafic-ultramafic intrusions at Getashankou are located in the eastern section of the Huangshan-Jingerquan Cu-Ni ore belt, eastern Tianshan, NW-China. There are four mafic-ultramafic intrusions, of which the intrusionⅠ, Ⅱ and Ⅲ contain Cu-Ni sulfide. Geochronology and geochemistry indicate that their formation age(282Ma) and the magma source are similar to the other early Permian Cu-Ni-bearing mafic-ultramafic intrusions in the eastern Tianshan. Microscopic examination and electron probe analysis of olivine and spinel suggest that the olivine is chrysolite and the forsterite (Fo) values of fresh olivine vary from 83.1 to 86.6, and its average component of nickel is 1918×10-6(ranges from 1273×10-6to 2719×10-6). According to the content of aluminum, the spinel can be divided into two kinds. The magma is derivative magma originated from the basaltic magma, which came into being through 15.8%~18.8% partial melting for the mantle source region, and the excess olivine in addition. The model calculation of the variation of nickel content and Fo of olivine crystals shows that before the olivine crystal, the magma has reached sulfur saturation. It also shows that the crystallization course was accompanied by the liquation of sulfide and the Fe-Ni exchange which happened between olivine and sulfide melt. It can be concluded that the intrusions have a good potential for Cu-Ni sulfide exploration.
Eastern Tianshan, Getashankou mafic-ultramafic intrusion, olivine, spinel, Cu-Ni mineralization potential
2013-08-08;
2013-12-30;[责任编辑]郝情情。
国家自然科学基金重点项目(编号:41030424)和新疆有色集团东天山岩浆铜镍硫化物矿床预测评价研究项目资助。
冯宏业(1987年—),男,2011年毕业于河北联合大学,获学士学位,在读研究生,研究方向为岩浆铜镍矿床成矿作用。E-mail: fhy0205@163.com。
P597.3+P618.41+P618.63
A
0495-5331(2014)02-0346-14