冯理芳
长期以来,小学数学教学中普遍存在着重知识掌握轻能力培养、重结论轻过程、重形式设计轻内容方法,思维培养缺乏全面性和系统性的问题,这些问题的存在很大程度上抑制了学生思维能力的发展,导致学生丧失学习兴趣。在小学数学教学中,要使学生有良好的数学素质,必须进行多方面能力的培养。其中,思维能力的培养尤为重要。
一、形象思维能力的培养
1. 要注意积累表象思维的素材
形象思维是用表象来思维的,表象是形象思维的“细胞”。要发展形象思维,必须丰富表象的积累。
首先,要重视直观课件,丰富表象。小孩的年龄特点是无意注意占重要地位,无论什么新鲜事物的出现,都会诱发其积极参与学习过程的兴趣。在教学过程中,可用图片、模型、教具或电教手段组织教学,把抽象知识形象化,让小学生充分感知所学的材料。只有定量的感性材料,才能在学生脑中留下鲜明的印象。要充分运用电教媒体进行教学,把静态变为动态,化远为近,并以丰富多彩、灵活多样的教学形式,充分调动起学生的心理因素。例如,在教学“7加几”时,我根据教材设计糖果课件。出示课件,教师提问:包里外各有几颗糖果?合起来共有几颗糖果?你是怎样想出来的?待学生欲言则不能时,教师边演示边提问:“7颗加几颗是10颗?”“这3颗是从哪里得出来的?”把5颗分为3颗和2颗,然后把分出的3颗移到包里与7颗合在一起是10颗,10颗加2颗是12颗。然后,引导学生脱离课件想象演示过程,学生就很容易在脑中建立表象,形成算理。
接着,让学生动手操作,丰富表象。动手操作,使学生各种感官都参与到学习中来,有助于从多方面、多角度观察事物。
2. 要注意形象与抽象的关系
形象思维是通过感性形象来反映与把握事物的思维活动,抽象思维是在感性认识的基础上,以抽象的概念为形式,遵循一定的逻辑规律进行思维活动。抽象思维是通过形象思维转化得出的。随着年龄的增长,年级升高,知识面的扩大,他们的思维水平在不断提高,这时就要鼓励他们逐步离开具体事物而进行抽象的思考。在学生的思维活动中,逻辑思维往往以形象思维为先导,而形象思维则是通向逻辑思维的桥梁,两者相互交织。又如“17-8”,为了帮助学生掌握计算方法,理解退位减法算理,可以先让学生摆出1捆零7根小棒,启发学生想个位7不够8减,怎么办?应该先算什么?再算什么?学生根据教师的启示,边操作边思考,提出先从1捆小棒拿出8根,再把剩下的2根和原来的7根合起来,是9根。最后,教师在黑板上画圈,使学生进一步理解退位减法的方法,掌握计算的步骤。另外,还必须从直观入手,充分挖掘教材的内容加强实验操作,强化形象感知。
二、直觉思维能力的培养
教学中,怎样才能有效地培养或发展学生的直觉思维能力呢?根据数学直觉思维产生的条件和数学直觉思维的特性,可以从下面几个方面着手培养学生的直觉思维能力。
1. 创设开放的教学环境,让学生大胆猜测
回顾过去的数学教学强调逻辑和精确,课本上很少有估计、猜测。猜测从心理学的角度看,是直觉思维的一部分,它具有快速、直接、跳跃的特点,是学生有方向的猜想和判断,是创造性思维的重要形式和表现。在教学中培养学生的猜测意识,引导学生进行大胆的猜想,正是培养学生直觉思维的重要方式。
在学生学习了同分母分数相加减之后,学习异分母分数的加减法,教师可以引导学生猜想:异分母分数相加减会是怎样的?它会与同分母分数加减法有什么联系?在教学正方形的周长时,让学生猜想:正方形的周长可能与什么有关?有什么关系?用猜想贯穿于课堂教学,这样不仅能调动学生的学习情趣,引导学生积极探索、主动学习,而且学生的数学直觉能力也在猜测中获得有效发展。学生的猜测可能是经过周密思维符合逻辑性的,但更可能是稚嫩无序的,甚至是错误的。作为教师始终应引导学生大胆猜测,让学生感到心理安全和心理自由,从而能放开胆量,敢想、敢说、敢猜。
2. 留足充分的探索时空,让学生主动感悟
“悟”是学生主动探求知识的一种心理活动,是外在知识内化的重要途径。学生只有用心去感悟,才能自己发现知识的内在规律,做到融会贯通,达到“真懂”“彻悟”的境界,提高数学直觉能力。
如在教学“商不变的规律”时,先提供一组算式让学生通过计算,发现它们的商都是3,于是觉得非常奇怪,产生探索的欲望,并试图找出其中的规律,这时再让学生根据已给出的式子,自己编出商是7的算式。学生通过积极主动的探索,从人人动手编题中体验到了除法中各数间的变化,悟出商不变的规律。教师应当提供机会,创设情境,引导学生主动探索,使学生在自己探索的过程中真正“悟”透数学知识。当学生使所学内容的整个知识系统在头脑中形成非常直观浅显、非常透彻明白的东西时,也就达到了“直觉地把握”。
3. 摆脱禁锢的思维定势,让学生的思维走向发散
教学中,培养学生的发散思维,基本途径有两条:第一,教师应鼓励学生标新立异,从不同的角度去思考同一个内容。如在教学应用题时,鼓励学生进行“一题多解”;在计算中,提倡计算方法多样化;在几何图形的求积中,找不同的解法等。第二,应适当设计开放性问题。开放性问题极具挑战性,可以给学生提供思维的空间,如:如果动物园的门票每张10元,某校组织48名同学去公园玩,带500元钱够不够?这一类问题具有现实意义,但又不能套用哪一类问题的解题规律,从而得出不同的解题方法。通过练习,培养学生思维的灵活性、变通性和独创性,使他们能突破传统思想的束缚,摆脱原有知识的羁绊和思维定势的禁锢,增强数学直觉的能力。
总之,在小学数学教学中,教师要以学生为本,既应加强学生形象思维能力的培养,又应加强学生直觉思维能力的训练。这样,不仅可以优化课堂教学,提高教学效率,而且能够激发学生强烈的求知欲,培养学生积极向上的探索进取精神,使学生在参与学习的过程中,既学到知识,又增长智慧,让学生充分体验参与之景、探究之趣、成功之乐,全面提高数学素养。