李建玲??苏震??刘海旺??李春辉
[摘要] 目的 检测Cx43与Smad1在胃癌中的表达,探讨其与胃癌发生发展的关系以及两者的相关性。 方法 采用免疫组织化学方法检测Cx43和Smad1在胃癌和正常胃组织中的表达,研究它们的表达与胃癌的关系以及二者的相关性。 结果 在胃癌中,Cx43的阳性表达率以及染色强度均随分化程度的降低而呈现出下降趋势(P<0.05)。Smad1的阳性表达率随分化程度的降低而呈现出上升趋势(P<0.05)。Cx43与Smad1在胃癌组织中的表达呈现出负相关性。 结论 Cx43在胃癌组织中的低表达与Smad1高表达显示二者存在负相关,可能对胃癌的发生发展起一定作用。
[关键词] 胃癌;Cx43;Smad1;免疫组织化学
[中图分类号] R735.2 [文献标识码] A [文章编号] 2095-0616(2014)04-19-04
A study of expressions and correlation of Cx43 and Smad1 in gastric cancer tissues
LI Jianling1 SU Zhen1 LIU Haiwang2 LI Chunhui2
1.Department of Anesthesiology, Chengde Medical University Affiliated Hospital,Chengde 067000,China;2.Department of Pathology, Chengde Medical University Affiliated Hospital,Chengde 067000,China
[Abstract] Objective To detect the expressions of Cx43 and Smad1 in gastric cancer and to discuss their relations with the development and progression of gastric cancer, and correlation between the two. Methods Immunohistochemistry was applied to detect the expressions of Cx43 and Smad1 in gastric cancer and normal gastric tissues.The relations between their expressions and gastric cancer and their correlation were investigated. Results The expression rate and staining intensity of Cx43 in gastric cancer decreased with the lowering of differentiation degree (P<0.05).The expression rate of Smad1 increased with the lowering of differentiation degree (P<0.05).The expression of Cx43 and Smad1 in gastric cancer tissues was negatively correlated. Conclusion The low expression of Cx43 and high expression of Smad1 in gastric cancer tissues show a negative correlation between the two, which may have certain effects on the development and progression of gastric cancer.
[Key words] Gastric cancer;Cx43;Smad1;Immunohistochemistry
胃癌是发病率和死亡率非常高的疾病,严重威胁着人类的健康。其发生发展是一个多因素、多步骤的渐进过程,其中抑癌因子与促癌因子的相互作用失衡最终导致了胃癌的发生[1]。缝隙连接(gap junction)是相邻细胞间的膜通道结构,由胞膜上的缝隙连接蛋白(connexin,Cx)构成,其中包括Cx43,细胞通过它所介导的细胞缝隙连接通讯(gap junction intercellular communication,GJIC)进行细胞间信息和能量的传递,调控细胞的生殖、分化及内环境的稳定[2]。Smad1是SMAD蛋白家族成员之一,是把骨形态发生蛋白与细胞表面受体作用的信号传至细胞核的中介分子。本研究通过免疫组织化学染色方法观察Cx43与Smad1在胃癌和正常胃组织中的表达情况,研究细胞间的信号传导是否会
影响信号通路Smad1介导的BMP通路从而调节胃癌的发生和发展。
1 材料与方法
1.1 标本来源
收集承德医学院附属医院2012年9月~2013年2月手术切除后,经病理证实为胃癌的组织60例及正常胃组织30例,所有患者术前未接受放化疗。组织常规取材后固定于中性甲醛,常规石蜡包埋,连续切片,厚4μm。由2名有经验的病理医师进行双盲独立阅片,镜检胃癌组织学类型、分化程度及淋巴结转移情况
1.2 患者一般情况
60例胃癌患者中,男34例、女26例,年龄47~77岁,平均(58.5±4.0)岁。肿瘤分化:高中分化者28例、低分化者32例。淋巴结转移:无转移者23例、有转移者37例。浸润深度:浸润全层者48例,未达全层者12例。30例正常胃组织,男19例,女11例,年龄35~72岁,平均(55.0±6.0)岁。endprint
1.3 免疫组化染色检测Cx43与Smad1蛋白的表达及结果判定
鼠抗人Cx43抗体购自福州迈新生物技术开发有限公司,兔抗人Smad1抗体购自武汉博士德生物工程有限公司,采用SP免疫组化法,实验步骤按说明书进行,DAB显色,苏木素复染细胞核。以PBS代替一抗作为阴性对照,用已知正常胃黏膜组织的标准阳性切片作为阳性对照。Cx43阳性信号在正常胃组织主要表达于细胞膜,在胃癌组织中可表达于细胞浆。Smad1阳性信号在正常胃组织及胃癌组织中主要表达于细胞膜。在染色均匀的区域,选取5个高倍镜视野(×400):(1)按阳性细胞百分率(A值)评分:1%~25%为1分,25%~50%为2分,>50%为3分;(2)按染色强度(B值)评分:不着色为0分,浅棕黄色为1分,棕黄色为2分,棕褐色为3分。综合染色阳性细胞数(A值)与染色强度(B值)判断结果,阴性(-):0分,弱阳性(+):1~2分,中度阳性(++):3~4分,强阳性(+++):5~6分。
1.4 统计学方法
采用SPSS17.0统计软件对数据进行统计学处理。各组间差异比较应用x2检验,P<0.05为差异具有统计学意义。
2 结果
2.1 Cx43在正常胃组织及胃癌组织中的表达
Cx43在正常胃组织、高中分化胃癌和低未分化胃癌中的阳性表达率分别为76.67%,53.57%和15.63%,呈现下降趋势(x2=38.134,P<0.05)。见表1。并且细胞浆的染色强度也呈下降趋势。见图1~3。
在胃癌中,Cx43的表达在不同年龄、性别胃癌组织中无显著性差异(P>0.05)。Cx43在浸润全层及有淋巴结转移组的表达明显低于未达全层(P<0.05)和无淋巴结转移组(P<0.05);在不同分化类型中Cx43的表达存在差异,低分化腺癌组Cx43的表达明显低于高中分化腺癌组(P<0.05)。见表2。
2.2 Smad1在正常胃组织及胃癌组织中的表达
Smad1在正常胃组织阳性表达率为16.67%,在高中分化胃癌组中阳性率为35.71%,在低分化胃癌中的阳性率为68.75%。Smad1蛋白的表达阳性率呈现上升趋势(x2=37.213,P<0.05)。见表1。并且细胞浆的染色强度也是上升趋势。见图4~6。
在胃癌中,与对Cx43表达的分析相类似:不同年龄、性别胃癌组织中Smad1表达也无显著性差异。Smad1在浸润全层及有淋巴结转移组的表达分别明显高于未达全层(P<0.05)和无淋巴结转移组(P<0.05)。在对不同病理组织分化类型分析显示:随着分化程度的降低,Smad1的表达呈上升趋势(P<0.05)。见表2。
2.3 Cx43与Smad1在胃癌组织中表达的关系
在正常胃组织30例中Cx43表达阴性而Smad1表达阳性2例,Cx43表达阳性而Smad1表达阴性20例;在胃癌组织60例中Cx43表达阴性而Smad1表达阳性22例,Cx43表达阳性而Smad1表达阴性10例。经Spearman等级相关分析得出相关系数r=-0.54,Cx43与Smad1呈现出负相关性。
3 讨论
缝隙连接是细胞间进行信息交流的一种特殊的膜结构,由胞膜上的缝隙连接蛋白亚单位构成。肿瘤发生发展的特点是增殖失控和异常分化,肿瘤中存在着Cx的异常表达。Cx43作为重要的缝隙连接蛋白参与了多种疾病和肿瘤的发生,对于胃癌也不例外[3-4]。
Cx43是缝隙链接通道的组成部分,在细胞间存在信息交流,发挥细胞间接触抑制的作用,正常细胞及癌旁细胞中均阳性表达,相反在肿瘤细胞中接触抑制的作用常常消失[5]。Cx43在癌组织中明显下降,导致了在癌细胞中最重要的细胞间接触抑制消失,促进了癌组织的生长。这就提示了Cx43表达下调导致细胞缝隙连接通讯(GJIC)异常或消失可能参与了胃癌的发生过程。
Smads作为细胞质内信号转导分子,Smads通过直接与DNA结合作为转录因子,或者与其他的转录因子以及细胞活化因子相互作用诱导其对BMP信号通路的转录应答。目前,脊椎动物中至少发现8种Smad蛋白,被分成3类:(1)受体调节型Smad S蛋白:其中Smad1、5、8参与BMP信号转导[6],Smad2,3参与TGF-β或激活素信号转导[7-8];(2)通用型Smad蛋白:主要是Smad4,它是TGF-β各类信号转导过程中共同需要的介质[9];(3)抑制型Smad S蛋白::其中Smad6优先抑制BMP信号转导,Smad7抑制TGF-β和BMP信号转导[10]。其Smadl是smad家族中受体调节型蛋白,是骨形态发生蛋白(bonemorphogenetic proteins,BMPs)细胞内信号转导子,是BMPs通路的关键组件,其表达的高低直接反映了BMPs通路的表达的高低。骨形成蛋白属于转化生长因子β(transfor ming growth factorβ,TGF-β)超家族的成员的一员[11-12]。BMP前体蛋白经蛋白水解后形成具有活性的二聚体,再与其受体的复合物结合,BMP受体有两型Ⅰ型和Ⅱ型,Ⅱ型受体使Ⅰ型受体磷酸化激活,后者通过依次磷酸化Smad1来传递BMP信号,Smad1是BMP家族的功能信号传感器[13]。Smad1形成异源聚合体移进细胞核,影响了BMP通路基因的转录[14-15],研究了Smad1在胃癌中的表达,也就一定程度上研究了BMP通路。本研究中Smad1在胃癌中的表达比在正常组之中要高,表达强度与胃癌的组织学分化程度、浸润深度、TNM分期、淋巴结转有关。这充分的说明了它与胃癌的发生和发展有密切的关系。
本研究中在胃癌组织中CX43的低表达与Smad1的高表达成负相关的关系,这就说明了胃癌的发生发展过程中存在着两条信号通路的交汇对话,他们共同促进了胃癌的发生和发展。endprint
[参考文献]
[1] Suzuki H,Lwasaki E,Hibi T.Helicobacter pylori and gastric cancer[J].Gastric Cancer,2009,12(2):79-87.
[2] Wendy A,Ciovacco,Carolyn G,et al.The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation[J].Bone,2009,44(1):80-86.
[3] Luiza Kanczuga-Koda,Mariusz Koda.Gradual Loss of Functional Gap Junction within Progression of Colorectal Cancer-A Shift from Membranous CX32 and CX43 Expression to Cytoplasmic Pattern During Colorectal Carcinogenesis[J].In Vivo,2010,24:101-107.
[4] Kanczuga-Koda L,Koda M,Sulkowski S.Gradual Loss of Functional Gap Junction within Progression of Colorectal Cancer-A Shift from Membranous CX32 and CX43 Expression to Cytoplasmic Pattern During Colorectal Carcinogenesis[J].In Vivo,2010,24(1):101-107.
[5] Willecke K,Haubrich S.Connexin expression systems: To what extent do they reflect the situation in the animal[J].Bioenerg Biomembr,1996,28(4):319-326.
[6] Kretzschmar M,Liu F,Hata A,et al.TheTGF-betafamily mediator Smadl is phosphoIylated directly and activatedfunctionaly by the BMP reEeptor kinase[J].Gene Dev,1997,11:984-995.
[7] Baker JC,Harland RM.A novelmesoderm inducer,M adr2,functions in the activin signal transduction pathway[J].Gene Dev,l996,383:168-172.
[8] Yu C,Liu Y,Huang D,et al.TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck[J].Oncol Rep,2011,25:1581-1587.
[9] Todorovi?-Rakovi? N,Milovanovi? J,Nikoli?-Vukosavljevi? D.TGF-β and its coreceptors in cancerogenesis:an overview[J].Biomark Med,2011,5:855-863.
[10] Nakao A,Afrakhte M,Mouen A,et al.Identification of Smad7,a Fbeta-inducible antagonist of TGF-beta signalir[J].Nature,1997,398:631-635.
[11] Pennison M,Pasche B.Targeting transforming growth factor-beta signaling[J].Curr Opin Oncol,2007,1996(6):579-585.
[12] Piek,Heldin CH,Ten Dike PT.Specificity,diversity,and Regulationin TGF-β superfamily signaling[J]. FASEBJ,1999,13(15):2105-2124.
[13] GMff JM,Bamal A,Mehon DA.Xenopus Med proteins transduce distinct subsets of signals for the TGF beta superfamily[J].Cell,1996,85(7):947-950.
[14] Miyazono K,Kumgi K,Inoue H.Divergence and convergence of TGF beta/BMP signaling[J].J Cell Physiol,2001,187(3):265-276.
[15] Feng XH,Derynck R.Specificity and versatility in TGF-B signaling through Smads[J].Annu Rev Cell Dev Biol,2005,21:659-693.
(收稿日期:2013-11-15)endprint
[参考文献]
[1] Suzuki H,Lwasaki E,Hibi T.Helicobacter pylori and gastric cancer[J].Gastric Cancer,2009,12(2):79-87.
[2] Wendy A,Ciovacco,Carolyn G,et al.The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation[J].Bone,2009,44(1):80-86.
[3] Luiza Kanczuga-Koda,Mariusz Koda.Gradual Loss of Functional Gap Junction within Progression of Colorectal Cancer-A Shift from Membranous CX32 and CX43 Expression to Cytoplasmic Pattern During Colorectal Carcinogenesis[J].In Vivo,2010,24:101-107.
[4] Kanczuga-Koda L,Koda M,Sulkowski S.Gradual Loss of Functional Gap Junction within Progression of Colorectal Cancer-A Shift from Membranous CX32 and CX43 Expression to Cytoplasmic Pattern During Colorectal Carcinogenesis[J].In Vivo,2010,24(1):101-107.
[5] Willecke K,Haubrich S.Connexin expression systems: To what extent do they reflect the situation in the animal[J].Bioenerg Biomembr,1996,28(4):319-326.
[6] Kretzschmar M,Liu F,Hata A,et al.TheTGF-betafamily mediator Smadl is phosphoIylated directly and activatedfunctionaly by the BMP reEeptor kinase[J].Gene Dev,1997,11:984-995.
[7] Baker JC,Harland RM.A novelmesoderm inducer,M adr2,functions in the activin signal transduction pathway[J].Gene Dev,l996,383:168-172.
[8] Yu C,Liu Y,Huang D,et al.TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck[J].Oncol Rep,2011,25:1581-1587.
[9] Todorovi?-Rakovi? N,Milovanovi? J,Nikoli?-Vukosavljevi? D.TGF-β and its coreceptors in cancerogenesis:an overview[J].Biomark Med,2011,5:855-863.
[10] Nakao A,Afrakhte M,Mouen A,et al.Identification of Smad7,a Fbeta-inducible antagonist of TGF-beta signalir[J].Nature,1997,398:631-635.
[11] Pennison M,Pasche B.Targeting transforming growth factor-beta signaling[J].Curr Opin Oncol,2007,1996(6):579-585.
[12] Piek,Heldin CH,Ten Dike PT.Specificity,diversity,and Regulationin TGF-β superfamily signaling[J]. FASEBJ,1999,13(15):2105-2124.
[13] GMff JM,Bamal A,Mehon DA.Xenopus Med proteins transduce distinct subsets of signals for the TGF beta superfamily[J].Cell,1996,85(7):947-950.
[14] Miyazono K,Kumgi K,Inoue H.Divergence and convergence of TGF beta/BMP signaling[J].J Cell Physiol,2001,187(3):265-276.
[15] Feng XH,Derynck R.Specificity and versatility in TGF-B signaling through Smads[J].Annu Rev Cell Dev Biol,2005,21:659-693.
(收稿日期:2013-11-15)endprint
[参考文献]
[1] Suzuki H,Lwasaki E,Hibi T.Helicobacter pylori and gastric cancer[J].Gastric Cancer,2009,12(2):79-87.
[2] Wendy A,Ciovacco,Carolyn G,et al.The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation[J].Bone,2009,44(1):80-86.
[3] Luiza Kanczuga-Koda,Mariusz Koda.Gradual Loss of Functional Gap Junction within Progression of Colorectal Cancer-A Shift from Membranous CX32 and CX43 Expression to Cytoplasmic Pattern During Colorectal Carcinogenesis[J].In Vivo,2010,24:101-107.
[4] Kanczuga-Koda L,Koda M,Sulkowski S.Gradual Loss of Functional Gap Junction within Progression of Colorectal Cancer-A Shift from Membranous CX32 and CX43 Expression to Cytoplasmic Pattern During Colorectal Carcinogenesis[J].In Vivo,2010,24(1):101-107.
[5] Willecke K,Haubrich S.Connexin expression systems: To what extent do they reflect the situation in the animal[J].Bioenerg Biomembr,1996,28(4):319-326.
[6] Kretzschmar M,Liu F,Hata A,et al.TheTGF-betafamily mediator Smadl is phosphoIylated directly and activatedfunctionaly by the BMP reEeptor kinase[J].Gene Dev,1997,11:984-995.
[7] Baker JC,Harland RM.A novelmesoderm inducer,M adr2,functions in the activin signal transduction pathway[J].Gene Dev,l996,383:168-172.
[8] Yu C,Liu Y,Huang D,et al.TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck[J].Oncol Rep,2011,25:1581-1587.
[9] Todorovi?-Rakovi? N,Milovanovi? J,Nikoli?-Vukosavljevi? D.TGF-β and its coreceptors in cancerogenesis:an overview[J].Biomark Med,2011,5:855-863.
[10] Nakao A,Afrakhte M,Mouen A,et al.Identification of Smad7,a Fbeta-inducible antagonist of TGF-beta signalir[J].Nature,1997,398:631-635.
[11] Pennison M,Pasche B.Targeting transforming growth factor-beta signaling[J].Curr Opin Oncol,2007,1996(6):579-585.
[12] Piek,Heldin CH,Ten Dike PT.Specificity,diversity,and Regulationin TGF-β superfamily signaling[J]. FASEBJ,1999,13(15):2105-2124.
[13] GMff JM,Bamal A,Mehon DA.Xenopus Med proteins transduce distinct subsets of signals for the TGF beta superfamily[J].Cell,1996,85(7):947-950.
[14] Miyazono K,Kumgi K,Inoue H.Divergence and convergence of TGF beta/BMP signaling[J].J Cell Physiol,2001,187(3):265-276.
[15] Feng XH,Derynck R.Specificity and versatility in TGF-B signaling through Smads[J].Annu Rev Cell Dev Biol,2005,21:659-693.
(收稿日期:2013-11-15)endprint