柳树净化农村生活污水系统的设计与应用

2014-05-04 18:56毛宇峰等
湖北农业科学 2014年2期
关键词:农村生活污水柳树

毛宇峰等

摘要:设计了一种适用于处理农村分散型生活污水的生态净化系统,主要由沉淀/厌氧、柳树/土壤两个处理单元构成。其特征在于,一级处理过程是梯级沉淀与厌氧消化同时进行,沉淀池在起到调节水量作用的同时,于停留期内形成厌氧反应,利用微生物生命过程中的代谢活动,将有机物分解转化为简单的无机物,使其转化成小分子有机酸、

关键词:农村生活污水;生态净化;柳树;无动力

中图分类号:X703 文献标识码:A 文章编号:0439-8114(2014)02-0426-04

Design and Application of a Willow Purification System of Rural Sewage

MAO Yu-feng1,WANG Hai-yun1,DENG Jie1,HE Ke1,XIAO Yao2

(1.College of Hydraulic & Environmental Engineering, China Three Gorges University,Yichang 443002,Hubei,China;

2.Zigong Light Industry Design and Research Institute,Zigong 643000,Sichuan, China)

Abstract: A suitable ecological purification system was designed for dealing with hilly rural sewage, mainly consisted of two parts of precipitation-anaerobicand tree-soil. Its features were that the first process was the cascade of precipitation and simultaneous anaerobic digestion. The sedimentation basin could adjust water yield, and anaerobic reaction would happen in stay period meanwhile. Organics would be resolved into simple inorganics by microbial metabolic activity, and made into small molecular organic acids, CO2, H2, CH4 and so on. The second waste water treatment unit worked mainly by willow purification. Soil treatment and filtering could also help treat waste water. Organic matter in sewage could be absorbed, adsorbed, fixed and decomposed by the comprehensive effects of tree roots, soil and microbe. The TP, TN and COD of water would be greatly reduced. According to the model test, the willow purification system could greatly reduce the TP, TN and COD. The average removal rate of COD, TPand TN were 91.18%, 86.13% and 86.85%, respectively.

Key words: rural water pollution; ecological purification; willow; no power

据相关统计表明,全国农村每年产生生活污水约200亿m3,绝大部分直接排放,严重污染了农村地区的水环境[1]。农村生活污水无害化处理是社会主义新农村建设的客观要求,其处理方式必须符合经济高效和简便易行的原则。在这种情况下,污水生态处理技术、厌氧技术等由于能耗低、运行管理方便而逐渐被引起重视[2]。但以前的研究中像人工湿地一类的生态处理技术多侧重于一年生或多年生草本植物,对多年生木本植物的研究相对较少,一年生或多年生草本植物对污染水体的短期净化效果较好,但因其每年都要收割重植,对于一个长期的净化过程来说,会在管理上带来不便[3]。

柳树用于生物修复的研究工作始于20世纪90年代,目前柳树环保林的营建与应用已在欧洲和美洲大陆逐步盛行。柳树可以对重金属污染、有机物污染、水体富营养化进行修复,用于土壤污染、水体污染、大气污染的生物修复[4]。因柳树适应性强,耐水湿,生长速度快,消耗营养多,并且其为木本植物,积累性强,所以,探索柳树对农村污水水质净化的效果很有意义。

1 工艺流程与净化系统设计

1.1 工艺流程设计

当前,农村污水处理技术主要是生态处理技术、生物处理技术及膜生物技术。其中,生态处理技术包括土地处理技术、稳定塘技术和蚯蚓生态滤池技术;生物处理技术包括厌氧生物技术和好氧生物技术[2]。近年来国外的研究表明,柳树显示出了植被滤器的优良特性:除了高的生物量生产力之外,还包括有效的元素吸收、高的蒸腾速率以及较强的重金属吸收能力[5]。

参考现有农村生活污水处理技术的优缺点[6,7],考虑柳树高效的生物修复作用和农村污水处理经济高效、简便易行的原则,本设计采用生物-生态组合技术来处理农村污水。其中,生物技术采用厌氧生物技术[8],生态技术采用柳树净化技术[3-5]为主和土地处理技术[9]为辅的综合处理技术。为了将每个必要的污水处理工艺环节进行简化合并,特设计了以下污水处理工艺流程,其工艺流程图如图1所示。

1.2 净化系统设计

1.2.1 污水预处理单元设计 参考现代污水三级处理技术,其一级处理主要是设调节池、沉沙池,考虑农村污水水质差、水量波动大这一设计背景,调节池和沉沙池的设置也是客观必要的。调节池的主要作用是提供对污水处理的缓冲能力,调节污水水量负荷、pH、水温和水质。沉沙池的作用是去除污水中密度较大的固体悬浮颗粒,同时可去除部分BOD5(生化需氧量),可改善生物处理构筑物运行条件并降低其BOD5负荷。而二级处理一般设曝气池、氧化沟和生物滤池等,考虑本净化系统是为了更有效地降低污水COD(化学需氧量)、氮磷含量,所以设置一个厌氧反应池作预处理是比较合适的[10]。因为厌氧处理是利用厌氧菌的作用,分解糖、氨基酸和有机酸形成小分子有机物,使废水中溶解性有机物显著提高,通过厌氧处理后,COD和SS(固体悬浮物浓度)去除率高,同时可生化性提高,有利于后续的好氧处理。而对于脱氮除磷,厌氧过程也是必不可少的环节。

为了提高污水处理效率,节约经济成本,本设计需将传统污水一级处理过程和二级处理过程结合起来作为本净化系统的预处理单元并放在同一污水净化构筑物当中,所以此污水处理构筑物是集调节池、沉淀池和厌氧池三者功能于一体的,因此本处理单元的设计要综合考虑适当的污水收纳量、高效的沉淀反应和密闭的反应环境3个因素。

1.2.2 污水主体处理单元设计 研究表明,柳树适应性强,生物量大,生长速度快,耐水湿,可以吸收各种污染物。一方面,柳树通过根系吸收土壤及废水中的水分和N、P等营养元素,作为构造植物体所需物质,一些非柳树生长必需物质如金属离子和部分有机物也可以随柳树体蒸腾拉力被植物吸收并积累。通过这一过程可以去除废水中大量的营养型污染物和部分有机物。另一方面,根际土壤由于土质疏松及柳树根系的传导作用,具有充分的氧气,同时根系所分泌的酶、氨基酸等为微生物的生存提供了必要的养分,因此为污染物的微生物降解提供了有利条件。根系分泌物中的酶还可以为废水中污染物的转化与固定提供催化机制,加速其降解及固定速率。另外,参考污水的土地处理技术[11],土壤的过滤、截留、渗透、物理吸附、化学吸附、化学分解、中和、挥发、生物氧化以及微生物的摄取等过程均能有效地净化污水。所以,柳树/土壤协同综合处理污水在理论上是可行的。

为了保证出水质量和土壤层的稳定性以及进一步提高污染物的去除效率,传统污水三级处理过程,需在土壤层下设沙滤层,进行厌氧微生物挂膜,这样污水流过填料层时不仅能进行物理过滤,而且污水中的有机物能被厌氧微生物截留、吸附及代谢分解。

综上所述,污水主体处理单元的构筑物是集柳树植物处理、土壤处理、厌氧生物滤池为一体的综合处理构筑物。

1.3 污水净化系统模型设计

为了更准确地诠释本污水净化系统设计,现给出如下设计模型装置示意图(图2、图3)。

柳树净化农村生活污水处理系统,包括沉淀/生物厌氧处理系统和柳树/土壤综合处理系统。沉淀/生物厌氧处理系统包括第一反应池,第一反应池顶部设有密封盖板;柳树/土壤综合处理系统包括第二反应池,第二反应池从上至下依次设有土壤层和过滤层,土壤层种植有柳树,第一反应池相对第二反应池位于地势高位。第一反应池内部设有隔板。柳树的根系位于土壤层与过滤层的交界处。过滤层从上至下由细沙层、细卵石层、粗卵石层构成。第二反应池连接有出水管,出水管设有闸阀。

本污水处理系统的运行过程为:生活污水经污水管网收集后由一根主管道进入沉淀/生物厌氧处理单元,在该系统中会对污水进行两方面的处理。一方面,第一反应池中设有两面挡水隔板,污水会在隔板顶部溢流,所以污水会经过三级沉淀处理从而去除较大的颗粒物和泥沙后让上清液进入柳树/土壤综合处理单元,并同时调节水质水量。另一方面,顶部的密封盖板会让第一反应池处在缺氧的环境中,污水通过厌氧消化作用将高分子难降解的有机物转变为低分子易被降解的有机物,脱氮,促进磷的释放并提高BOD/COD的比值,为二级处理创造有利条件。在污水进入柳树/土壤综合处理系统和污水渗入柳树根系和土壤层后,既可以满足植物对水分和养分的需求,同时通过柳树根系对有机污染物的吸收与吸附又能降低污水中有机污染物的含量。利用土壤-微生物-柳树构成的生态系统自我调控机制和对污染物的综合净化功能包括植物固定、微生物降解、硝化反硝化、吸收、氧化还原等多种作用实现污水自然净化。最后在经过由第二反应池底部的过滤层过滤后,污水能够得到有效净化。池子尾部出水管上的闸阀用于调节柳树/土壤综合处理系统的水质水量,保证种植的柳树不会因缺水或者污水有机负荷过高而影响正常生长。该模型的运行方法为持续通过污水收集管网进水,间歇式排水。

2 应用实例——某农村生活污水净化系统

2.1 污水净化系统服务区概况

2.2 净化系统实体设计

1)场地选择。选择比住户地势低的地方,且存在一定的坡度。

3)污水处理系统的修建。修建水泥隔板与顶部盖板,并注意反应池内部的防漏。池尾构建泄洪槽,底部的出水管安装水闸,以便随时调节二级处理池中的水质水量。

4)滤料的选择。选择当地的细沙与卵石,细卵石直径为1~2 mm,粗卵石直径为3~6 mm。细沙层厚8 cm,细卵石层厚15 cm,粗卵石层厚20 cm。

5)柳树的选择与培育。选择当地的旱柳作为净化污水的树种,按株距1 m种植9棵柳树均匀分布在二级处理池,该树种生长代谢速度快,喜水,能快速净化生活污水。树的高度应在1 m以上且根系繁茂。由于农村生活污水排放无规律,为保证柳树正常生长可通过调整出水阀来保证二级处理池中的水量与有机负荷。

2.3 净化系统运行方案

由于农村污水排放无规律,特别是污水排放时间属间歇排放,所以为了整个系统的每个环节正常运行,特别是柳树和微生物的正常生长,整个系统通过池尾的出水阀门间歇式运行。

待移栽柳树成活、微生物群落生长正常即模型运行稳定后开始本次试验,按5、10、15、20 d的水力停留时间定期在进水口、沉淀/生物厌氧处理池和出水口取水样,测定其pH、TP、TN和COD的数值并进行分析。

3 结果与讨论

3.1 试验结果

3.1.1 废水中COD的变化 因为柳树/土壤综合处理单元中的生物降解起了关键性作用,种植的柳树以及土壤中的微生物通过其快速的新陈代谢不断吸附、吸收污水中的有机物,特别是柳树生物量大,生长速度快。由图5可知,污水经过柳树净化系统处理后,COD浓度逐级降低,尤其是经过柳树/土壤综合处理单元后显著降低,COD平均去除率为91.18%。

3.1.2 废水中总磷的变化 柳树快速的新陈代谢需要大量的磷元素,对于低浓度的废水柳树根系的吸收同化作用是TP去除的主要途径。由图6可知,污水经过柳树净化系统处理后,TP浓度逐级降低,且随着水力停留时间的增加TP的去除率越来越高,TP的平均去除率为86.13%。

3.1.3 废水中总氮的变化 柳树本身的生长需要氮素,其根系除了为微生物提供介质环境外,主要表现为对氮类有机污染物的吸收、利用和转化。而根系周围的微生物通过硝化与反硝化作用可促进柳树对氮素的吸收与吸附。由图7可知,污水经过柳树净化系统处理后,TN浓度逐级降低,其平均去除率为86.85%。

3.1.4 废水pH的变化 由图8可知,污水净化模型各区的pH基本保持在中性范围内,且水力停留时间在15 d内时,流经污水净化模型污水的pH是逐级增大的,但过长的反应时间可能使得pH降低。本污水净化系统可使污水在逐级降解过程中pH保持在正常的范围内,且出水pH的平均值为7.34。

3.2 讨论

参考文献:

[1] 孙瑞敏.我国农村生活污水排水现状分析[J].能源与环境,2010(5):33-34,42.

[2] 龙 焙,余训民,李庆新,等.新农村建设中生活污水处理研究综述[J].科技创业月刊,2010(12):179-180,182.

[3] 林惠凤,黄 婧,朱联东,等.浮床栽培柳树在富营养化水体中的生长特性及水质净化效果研究[J].湖北大学学报(自然科学版),2009,31(2):210-212.

[4] 汪有良,王宝松,李荣锦,等.柳树在环境污染生物修复中的应用[J].江苏林业科技,2006,33(2):40-43.

[5] 曲 艺,范俊岗,于清录,等.柳树植被滤器在土壤及污水净化中的作用[J].辽宁林业科技,2004(4):20-22.

[6] 何安吉,黄 勇.农村生活污水处理技术研究进展及改进设想[J].环境科技,2010,23(3):68-71,75.

[7] 赵 军.我国农村生活污水分散式处理技术[J].安徽农业科学,2010,38(27):15203-15205.

[8] 黄 武,陈明晖,赵光桦,等.无动力、地埋分散式厌氧系统处理农村生活污水[J].中国给水排水,2008,24(20):43-45.

[9] 王书文,刘庆玉,焦银珠,等.生活污水土壤渗滤就地处理技术研究进展[J].水处理技术,2006,23(3):5-10.

[10] 韩润平,张宗培,吴新平,等.厌氧水解滤池污水处理过程中水质的变化[J].河南科学,2003,21(4):490-493.

[11] 孙 静,郭 伟,李小宁,等.快速渗滤土地处理系统对城市生活污水中N、P去除的优化研究[J].城市环境与城市生态,2003,16(6):32-33.

待移栽柳树成活、微生物群落生长正常即模型运行稳定后开始本次试验,按5、10、15、20 d的水力停留时间定期在进水口、沉淀/生物厌氧处理池和出水口取水样,测定其pH、TP、TN和COD的数值并进行分析。

3 结果与讨论

3.1 试验结果

3.1.1 废水中COD的变化 因为柳树/土壤综合处理单元中的生物降解起了关键性作用,种植的柳树以及土壤中的微生物通过其快速的新陈代谢不断吸附、吸收污水中的有机物,特别是柳树生物量大,生长速度快。由图5可知,污水经过柳树净化系统处理后,COD浓度逐级降低,尤其是经过柳树/土壤综合处理单元后显著降低,COD平均去除率为91.18%。

3.1.2 废水中总磷的变化 柳树快速的新陈代谢需要大量的磷元素,对于低浓度的废水柳树根系的吸收同化作用是TP去除的主要途径。由图6可知,污水经过柳树净化系统处理后,TP浓度逐级降低,且随着水力停留时间的增加TP的去除率越来越高,TP的平均去除率为86.13%。

3.1.3 废水中总氮的变化 柳树本身的生长需要氮素,其根系除了为微生物提供介质环境外,主要表现为对氮类有机污染物的吸收、利用和转化。而根系周围的微生物通过硝化与反硝化作用可促进柳树对氮素的吸收与吸附。由图7可知,污水经过柳树净化系统处理后,TN浓度逐级降低,其平均去除率为86.85%。

3.1.4 废水pH的变化 由图8可知,污水净化模型各区的pH基本保持在中性范围内,且水力停留时间在15 d内时,流经污水净化模型污水的pH是逐级增大的,但过长的反应时间可能使得pH降低。本污水净化系统可使污水在逐级降解过程中pH保持在正常的范围内,且出水pH的平均值为7.34。

3.2 讨论

参考文献:

[1] 孙瑞敏.我国农村生活污水排水现状分析[J].能源与环境,2010(5):33-34,42.

[2] 龙 焙,余训民,李庆新,等.新农村建设中生活污水处理研究综述[J].科技创业月刊,2010(12):179-180,182.

[3] 林惠凤,黄 婧,朱联东,等.浮床栽培柳树在富营养化水体中的生长特性及水质净化效果研究[J].湖北大学学报(自然科学版),2009,31(2):210-212.

[4] 汪有良,王宝松,李荣锦,等.柳树在环境污染生物修复中的应用[J].江苏林业科技,2006,33(2):40-43.

[5] 曲 艺,范俊岗,于清录,等.柳树植被滤器在土壤及污水净化中的作用[J].辽宁林业科技,2004(4):20-22.

[6] 何安吉,黄 勇.农村生活污水处理技术研究进展及改进设想[J].环境科技,2010,23(3):68-71,75.

[7] 赵 军.我国农村生活污水分散式处理技术[J].安徽农业科学,2010,38(27):15203-15205.

[8] 黄 武,陈明晖,赵光桦,等.无动力、地埋分散式厌氧系统处理农村生活污水[J].中国给水排水,2008,24(20):43-45.

[9] 王书文,刘庆玉,焦银珠,等.生活污水土壤渗滤就地处理技术研究进展[J].水处理技术,2006,23(3):5-10.

[10] 韩润平,张宗培,吴新平,等.厌氧水解滤池污水处理过程中水质的变化[J].河南科学,2003,21(4):490-493.

[11] 孙 静,郭 伟,李小宁,等.快速渗滤土地处理系统对城市生活污水中N、P去除的优化研究[J].城市环境与城市生态,2003,16(6):32-33.

待移栽柳树成活、微生物群落生长正常即模型运行稳定后开始本次试验,按5、10、15、20 d的水力停留时间定期在进水口、沉淀/生物厌氧处理池和出水口取水样,测定其pH、TP、TN和COD的数值并进行分析。

3 结果与讨论

3.1 试验结果

3.1.1 废水中COD的变化 因为柳树/土壤综合处理单元中的生物降解起了关键性作用,种植的柳树以及土壤中的微生物通过其快速的新陈代谢不断吸附、吸收污水中的有机物,特别是柳树生物量大,生长速度快。由图5可知,污水经过柳树净化系统处理后,COD浓度逐级降低,尤其是经过柳树/土壤综合处理单元后显著降低,COD平均去除率为91.18%。

3.1.2 废水中总磷的变化 柳树快速的新陈代谢需要大量的磷元素,对于低浓度的废水柳树根系的吸收同化作用是TP去除的主要途径。由图6可知,污水经过柳树净化系统处理后,TP浓度逐级降低,且随着水力停留时间的增加TP的去除率越来越高,TP的平均去除率为86.13%。

3.1.3 废水中总氮的变化 柳树本身的生长需要氮素,其根系除了为微生物提供介质环境外,主要表现为对氮类有机污染物的吸收、利用和转化。而根系周围的微生物通过硝化与反硝化作用可促进柳树对氮素的吸收与吸附。由图7可知,污水经过柳树净化系统处理后,TN浓度逐级降低,其平均去除率为86.85%。

3.1.4 废水pH的变化 由图8可知,污水净化模型各区的pH基本保持在中性范围内,且水力停留时间在15 d内时,流经污水净化模型污水的pH是逐级增大的,但过长的反应时间可能使得pH降低。本污水净化系统可使污水在逐级降解过程中pH保持在正常的范围内,且出水pH的平均值为7.34。

3.2 讨论

参考文献:

[1] 孙瑞敏.我国农村生活污水排水现状分析[J].能源与环境,2010(5):33-34,42.

[2] 龙 焙,余训民,李庆新,等.新农村建设中生活污水处理研究综述[J].科技创业月刊,2010(12):179-180,182.

[3] 林惠凤,黄 婧,朱联东,等.浮床栽培柳树在富营养化水体中的生长特性及水质净化效果研究[J].湖北大学学报(自然科学版),2009,31(2):210-212.

[4] 汪有良,王宝松,李荣锦,等.柳树在环境污染生物修复中的应用[J].江苏林业科技,2006,33(2):40-43.

[5] 曲 艺,范俊岗,于清录,等.柳树植被滤器在土壤及污水净化中的作用[J].辽宁林业科技,2004(4):20-22.

[6] 何安吉,黄 勇.农村生活污水处理技术研究进展及改进设想[J].环境科技,2010,23(3):68-71,75.

[7] 赵 军.我国农村生活污水分散式处理技术[J].安徽农业科学,2010,38(27):15203-15205.

[8] 黄 武,陈明晖,赵光桦,等.无动力、地埋分散式厌氧系统处理农村生活污水[J].中国给水排水,2008,24(20):43-45.

[9] 王书文,刘庆玉,焦银珠,等.生活污水土壤渗滤就地处理技术研究进展[J].水处理技术,2006,23(3):5-10.

[10] 韩润平,张宗培,吴新平,等.厌氧水解滤池污水处理过程中水质的变化[J].河南科学,2003,21(4):490-493.

[11] 孙 静,郭 伟,李小宁,等.快速渗滤土地处理系统对城市生活污水中N、P去除的优化研究[J].城市环境与城市生态,2003,16(6):32-33.

猜你喜欢
农村生活污水柳树
柳树
柳树
小柳树
会治病的柳树
典型农村分散式污水处理工艺在农村环境综合整治中的应用
农村生活污水处理工程设计探索
好氧反硝化细菌LKX—1的分离、鉴定及初步应用研究
生态池+人工湿地工艺在海宁某农村污水处理工程的应用
一体化生物膜技术处理农村生活污水试验分析
我国新农村建设污水处理效益分析