基质金属蛋白酶及其抑制剂在风湿性二尖瓣狭窄合并心房纤颤中的作用

2014-04-15 06:27隋玺仲高长青
解放军医学院学报 2014年5期
关键词:纤颤风湿性胞外基质

隋玺仲,高长青

解放军医学院/解放军总医院 心血管外科,北京 100853

基质金属蛋白酶及其抑制剂在风湿性二尖瓣狭窄合并心房纤颤中的作用

隋玺仲,高长青

解放军医学院/解放军总医院 心血管外科,北京 100853

心房纤颤是临床上较为普遍的一种心律失常,心房纤颤时可加重风湿性二尖瓣瓣膜狭窄的程度。房颤对心脏瓣膜的破坏主要表现为细胞外基质正常结构被破坏,胶原沉积增多,各型胶原比例失调和排列紊乱。影响细胞外基质代谢的最主要的酶类是基质金属蛋白酶(matrix metalloproteinases,MMPs)和金属蛋白酶内源性组织抑制剂(tissue inhibitors of metalloproteinases,TIMPs)。心房纤颤时MMPs、TIMPs平衡失调使心脏瓣膜破坏,Ⅰ型和Ⅲ型胶原沉积增多,排列紊乱。MMP 9和TIMP 2是心房纤颤发生后MMPs和TIMPs中表达最具有意义的指标。本文通过对心房纤颤后心脏瓣膜组织中MMP 9和TIMP 2异常表达的研究进行综述,以了解心房纤颤对风湿性二尖瓣瓣膜影响的程度。

风湿性心脏瓣膜病;心房纤颤;基质金属蛋白酶;金属蛋白酶内源性组织抑制剂

心房颤动(房颤)是一种临床上最为常见的心律失常,中国房颤流行病学调查的结果显示我国房颤患病率为0.77%,其发病率随年龄的增长而明显上升。35岁以上房颤的患病率男性为0.74%,女性为0.72%; 60岁以上男女患病率分别增长至1.83%和1.92%,且上升趋势明显[1]。风湿性心脏瓣膜病,尤其是二尖瓣狭窄的患者,常常表现为充血性心衰以及左心房扩大,这些均是引起房颤的极高危因素。心房纤颤可加重二尖瓣瓣膜的病变,破坏细胞外基质,使胶原沉积增多,胶原比例失调和排列紊乱[2]。基质金属蛋白酶(matrix metalloproteinases,MMPs)和金属蛋白酶内源性组织抑制剂(tissue inhibitors of metalloproteinases,TIMPs)是反映心房纤颤对二尖瓣瓣膜破坏程度的最重要酶类,其中MMP 9和TIMP 2是这些酶中表达最具有意义的指标,本文对其机制进行综述[3]。

1 心房纤颤对心脏瓣膜的影响

心房内正常血流动力学的表现为血流对二尖瓣瓣膜仅存在垂直方向的血流压力,在左心室舒张时,二尖瓣开放,血流在二尖瓣表面产生垂直向下的压力;在左心室收缩时,二尖瓣关闭,血液流动方向发生逆转,血流在二尖瓣表面产生垂直向上的剪切力[4]。风湿性二尖瓣狭窄发生心房纤颤后,左心房内血液发生湍流,而湍流性血流对二尖瓣产生杂乱性剪切力,杂乱无序的合力直接造成瓣膜组织的损伤;此外湍流性血流导致血液黏性增大,在凝血因子、凝血酶原及纤维蛋白原等作用下,极易形成血栓。当血栓附着于二尖瓣瓣膜时,纤溶系统被激活,在分解瓣膜表面血栓的同时,破坏了瓣膜表面的黏膜,刺激瓣膜发生充血、水肿等炎性改变,炎性渗出物、纤维蛋白沉积、纤维素样坏死导致二尖瓣瓣膜的僵硬、挛缩、钙化,进一步加重风湿性二尖瓣瓣膜的病变[5]。

心房纤颤可促进二尖瓣瓣膜组织间质的胶原代谢增强,胶原沉积增多,各型胶原比例失调和排列紊乱[6]。心房纤颤导致心脏容量负荷或机械负荷增大,Ⅰ/Ⅲ型胶原比例失调,瓣膜胶原网架改建,瓣膜组织间质纤维化,加重了瓣膜组织的硬化与畸形程度[7]。Patel等[8]研究发现,心房纤颤发生后,心脏瓣膜组织中Ⅰ型胶原可增加15% ~40%,Ⅲ型胶原可增加10% ~ 35%,Ⅰ型、Ⅲ型胶原同时转化为Ⅳ型胶原,Ⅳ型胶原的表达数量可较正常瓣膜组织中增加50% ~ 80%。

2 心房纤颤对心脏瓣膜分子结构的改变

心房纤颤对心脏瓣膜分子结构的改变,主要表现为细胞外基质正常结构被破坏、胶原沉积增多、各型胶原比例失调和排列紊乱[9]。

2.1 细胞外基质(extracellular matrix,ECM) 细胞外基质是细胞与细胞之间的物质,是由大分子构成的错综复杂的网络,与组织结构的完整性相关[10]。影响ECM代谢最主要的酶类是基质金属蛋白酶和金属蛋白酶内源性组织抑制剂11]。MMPs是一种Zn2+依赖性的中性蛋白酶结构,又称为“锌指结构”,其主要功能是与ECM的各种蛋白成分结合,降解和重构ECM,维持ECM的动态平衡[12]。TIMPs是MMPs的内源性特异性抑制剂,主要竞争性地抑制MMPs的Zn2+活性位点与蛋白质结合,抑制催化反应和启动子的激活,形成较稳定的硫化螯合物,从而抑制MMPs活性和其蛋白水解活性[13-14]。

MMP 9是MMPs家族中的对心房纤颤反应较为敏感的指标,而TIMP 2是MMP 9的特异性抑制因子[15]。MMP 9的活性受到TIMP 2的严格调控,TIMP 2对MMP 9起特异性抑制作用,保持MMP 9/TIMP 2的稳态是保证心脏瓣膜内部分子结构稳定的关键[16]。在正常生理条件下,由于明胶和弹性蛋白的作用,机体二尖瓣瓣膜组织也可产生一定的纤维化和钙化[17]。此时机体自身调节反应激活,MMP 9表达升高,以酶原形式分泌到细胞外,通过纤维蛋白溶酶与二尖瓣瓣膜组织中的明胶和弹性蛋白相结合,水解弹性蛋白和明胶,改善心脏瓣膜纤维化和钙化[18]。MMP 9增高到一定程度后,TIMP 2被激活,TIMP 2水平升高,竞争性地与Zn2+结合,使MMP 9的蛋白结合位点被占据,抑制MMP 9的过度表达,使得MMP 9/TIMP 2保持稳态,心脏瓣膜内部分子结构稳定,保持心脏瓣膜的弹性与功能[19]。

2.2 胶原结构的异常 心房纤颤发生后,心脏瓣膜损伤加重,MMP 9的表达异常升高,TIMP 2受到心房纤颤影响,其表达受到抑制,MMP 9/TIMP 2的稳态破坏[20-21]。异常表达的MMP 9过度水解心脏瓣膜的弹性蛋白和明胶,导致心脏瓣膜组织结构破坏,大量纤维素生成,纤维蛋白沉积,与Ca2+结合后,心脏瓣膜发生僵硬、挛缩、钙化,心脏瓣膜狭窄程度加重[22]。Chiao等[23]研究发现,房颤发生后,MMP 9的表达增加,TIMP 2的表达下降,MMP 9的活性蛋白表达可增加4 ~ 5倍,而TIMP 2的表达下降到40%左右。通过测定MMP 9和TIMP 2的表达程度,可反映出二尖瓣瓣膜组织中胶原蛋白以及纤维钙化的改变程度[24]。

MMP 9/TIMP 2的基因转录表达水平失衡引起Ⅰ、Ⅲ、Ⅳ型胶原转录水平的改变,导致瓣膜组织中的Ⅰ型、Ⅲ型和Ⅳ胶原沉积增多,排列紊乱,是心房纤颤的风湿性二尖瓣组织间质纤维化的共同分子基础[25]。心房纤颤的风湿性二尖瓣瓣膜组织中MMP 9的mRNA表达水平与Ⅰ、Ⅲ、Ⅳ型胶原的表达水平呈正相关,TIMP 2的mRNA表达水平与Ⅰ、Ⅲ、Ⅳ型胶原的表达水平呈负相关[26-27]。二尖瓣组织中MMP 9的表达上调,TIMP 2的表达下降,导致胶原mRNA表达增加,胶原纤维增加,大量增多的胶原纤维填充水肿的心脏瓣膜,导致胶原排列紊乱,瓣膜弹性丧失,加重瓣膜的纤维化和钙化。Anné等[28]研究发现,在持续性心房纤颤影响下,二尖瓣瓣膜组织中的Ⅳ型胶原数量增多,mRNA表达增加,胶原蛋白表达较可增加5 ~ 6倍,活性蛋白亦可增加40%左右。

3 结语

心房纤颤可影响血流动力学,MMP 9和TIMP 2是反映心房纤颤致细胞外基质结构破坏的特异性指标[29],心房纤颤可刺激MMP 9和TIMP 2的异常表达,MMP 9/TIMP 2表达水平失衡,破坏细胞外基质正常结构,胶原沉积增多,各型胶原比例失调和排列紊乱,导致瓣叶交界处粘连,瓣膜前后叶增厚,腱索及乳头肌粘连、融合、挛缩,瓣叶纤维钙化等改变,加重风湿性二尖瓣瓣膜狭窄的程度[29-30]。

1 Zhou Z, Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China[J]. J Epidemiol, 2008, 18(5):209-216.

2 Hinton RB, Yutzey KE. Heart valve structure and function in development and disease[J]. Annu Rev Physiol, 2011, 73 :29-46.

3 Hinton RB, Adelman-Brown J, Witt S, et al. Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model [J] . Circ Res, 2010, 107 (4):549-557.

4 Tseng H, Grande-Allen KJ. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function[J]. Acta Biomater, 2011, 7(5):2101-2108.

5 Corradi D, Callegari S, Maestri R, et al. Differential structural remodeling of the left-atrial posterior wall in patients affected by mitral regurgitation with or without persistent atrial fibrillation:a morphological and molecular study[J]. J Cardiovasc Electrophysiol, 2012, 23(3):271-279.

6 Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential[J].Antioxid Redox Signal, 2010, 13(6):877-918.

7 Krishnamurthy VK, Guilak F, Narmoneva DA, et al. Regional structure-function relationships in mouse aortic valve tissue[J]. J Biomech, 2011, 44(1):77-83.

8 Patel P, Dokainish H, Tsai P, et al. Update on the association of inflammation and atrial fibrillation[J]. J Cardiovasc Electrophysiol,2010, 21(9):1064-1070.

9 Corradi D, Maestri R, Macchi E, et al. The atria: from morphology to function[J]. J Cardiovasc Electrophysiol, 2011, 22(2):223-235.

10 Gao Z, Kim GH, Mackinnon AC, et al. Ets1 is required for proper migration and differentiation of the cardiac neural crest[J].Development, 2010, 137(9):1543-1551.

11 Bukowska A, Lendeckel U, Bode-Böger SM, et al. Physiologic and pathophysiologic role of calpain: implications for the occurrence of atrial fibrillation[J]. Cardiovasc Ther, 2012, 30(3):e115-e127.

12 Hurley JR, Balaji S, Narmoneva DA. Complex temporal regulation of capillary morphogenesis by fibroblasts[J]. Am J Physiol Cell Physiol, 2010, 299(2):C444-C453.

13 Kato K, Fujimaki T, Yoshida T, et al. Impact of matrix metalloproteinase-2 levels on long-term outcome following pharmacological or electrical cardioversion in patients with atrial fibrillation[J]. Europace, 2009, 11(3):332-337.

14 Wirrig EE, Hinton RB, Yutzey KE. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves[J]. J Mol Cell Cardiol, 2011, 50(3):561-569.

15 Chen H, Liu K, Chen LJ, et al. Genetic associations in polypoidal choroidal vasculopathy: a systematic review and meta-analysis[J].Mol Vis, 2012, 18 :816-829.

16 Wilton E, Bland M, Thompson M, et al. Matrix metalloproteinase expression in the ascending aorta and aortic valve[J]. Interact Cardiovasc Thorac Surg, 2008, 7(1):37-40.

17 Zeng R, Wen F, Zhang X, et al. Serum levels of matrix metalloproteinase 2 and matrix metalloproteinase 9 elevated in polypoidal choroidal vasculopathy but not in age-related macular degeneration[J]. Mol Vis, 2013, 19 :729-736.

18 Cambronero F, Marín F, Roldán V, et al. Biomarkers of pathophysiology in hypertrophic cardiomyopathy: implications for clinical management and prognosis[J]. Eur Heart J, 2009, 30(2):139-151.

19 Namwat N, Puetkasichonpasutha J, Loilome W, et al.Downregulation of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is associated with enhanced expression of matrix metalloproteinases and cholangiocarcinoma metastases[J]. J Gastroenterol, 2011, 46(5):664-675.

20 Foronjy R, Nkyimbeng T, Wallace A, et al. Transgenic expression of matrix metalloproteinase-9 causes adult-onset emphysema in mice associated with the loss of alveolar elastin[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(6):L1149-L1157.

21 Muir A, Greenspan DS. Metalloproteinases in Drosophila to humans that are central players in developmental processes[J]. J Biol Chem, 2011, 286(49):41905-41911.

22 Krishnamurthy VK, Opoka AM, Kern CB, et al. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease[J]. Matrix Biol, 2012, 31(3):197-205.

23 Chiao YA, Dai Q, Zhang J, et al. Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging[J]. Circ Cardiovasc Genet,2011, 4(4):455-462.

24 Chiao YA, Ramirez TA, Zamilpa R, et al. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice[J]. Cardiovasc Res, 2012, 96(3):444-455.

25 Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals[J].Nat Rev Mol Cell Biol, 2009, 10(2):126-139.

26 Koh YS, Chang K, Kim PJ, et al. A close relationship between functional polymorphism in the promoter region of matrix metalloproteinase-9 and acute myocardial infarction[J]. Int J Cardiol, 2008, 127(3):430-432.

27 Zhang B, Zhang J, Xu ZY, et al. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma[J]. BMC Cancer, 2009, 9:427.

28 Anné W, Willems R, Roskams T, et al. Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation[J]. Cardiovasc Res, 2005, 67(4):655-666.

29 Zitka O, Kukacka J, Krizkova S, et al. Matrix metalloproteinases[J].Curr Med Chem, 2010, 17(31):3751-3768.

30 Lim CS, Shalhoub J, Gohel MS, et al. Matrix metalloproteinases in vascular disease--a potential therapeutic target?[J]. Curr Vasc Pharmacol, 2010, 8(1):75-85.

Effect of matrix metalloproteinases and tissue inhibitors of metalloproteinases on rheumatic mitral valve stenosis with atrial fi brillation

SUI Xi-zhong, GAO Chang-qing
Department of Cardiovascular Surgery, Chinese PLA General Hospital/Chinese PLA Medical College, Beijing 100853, China
Corresponding author: GAO Chang-qing. Email: gaochq301@yahoo.com

Atrial fibrillation is a common clinical arrhythmia, which could aggravate the rheumatic mitral valve stenosis. The pathomechanism for the mitral valve with atrial fi brillation includes the destruction of the structures of extracellular matrix and the deposition and disproportion of collagen. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs)are the main enzymes that affect the extracellular matrix's metabolism. The disequilibrium between MMPs and TIMPs with atrial fibrillation make the extracellular matrix of atrial muscle degradation, typeⅠandⅢcollagen deposition and disarrangement.According to current findings, matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 2 are the most significant indicators in their terms. This study re fl ects that atrial fi brillation will aggravate the rheumatic mitral valve stenosis by analyzing the relationship between the abnormal expression of MMP 9 and TIMP 2.

rheumatic heart valve disease; atrial fi brillation; matrix metalloproteinases; tissue inhibitors of metalloproteinases

R 345

A

2095-5227(2014)05-0500-03

10.3969/j.issn.2095-5227.2014.05.028

时间:2014-04-01 17:48

http://www.cnki.net/kcms/detail/11.3275.R.20140401.1748.007.html

2013-12-16

国家高技术研究发展计划(863)资助项目(2012AA021104)Supported by the National High Technology Research and Development Program of China(2012AA021104)

隋玺仲,男,在读博士。Email: sxztiantang@163.com

高长青,主任医师,教授。Email: gaochq301@yahoo.com

猜你喜欢
纤颤风湿性胞外基质
脱细胞外基质制备与应用的研究现状
关于经络是一种细胞外基质通道的假说
和肽素在快速心房纤颤中的临床研究
心房纤维性颤动对脑梗死患者康复的影响
药物水杨酸钠与5%碳酸氢钠耳静脉注射治疗猪风湿性后肢瘫痪
蒙药治疗风湿性心脏病101例疗效观察
蒙药治疗风湿性心脏病疗效观察
美托洛尔在风湿性心脏病治疗中的应用研究
水螅细胞外基质及其在发生和再生中的作用
镰形棘豆总黄酮对TGF-β1诱导的人肾小管上皮细胞分泌细胞外基质成分的影响