诱导多能干细胞重编程方法的优化及其在航天医学中的应用展望

2014-04-05 01:36徐洪杰戴钟铨李莹辉
化学与生物工程 2014年2期
关键词:体细胞纤维细胞编程

徐洪杰,戴钟铨,吴 峰,商 澎,李莹辉

(1.西北工业大学生命学院 空间生物实验模拟技术重点实验室,陕西 西安710072;2.中国航天员科研训练中心 航天医学基础与应用国家重点实验室,北京100094)

空间飞行的微重力环境会导致一系列航天医学问题的发生,包括骨丢失、肌肉萎缩、贫血、免疫功能下降和心血管系统紊乱等。研究显示,为适应空间独特的微重力环境,组织体细胞活性和干细胞分化能力会发生改变[1-4],进而导致相应生理系统问题的发生发展。成体干细胞是各种组织器官的祖细胞和支持细胞,具有自我更新和分化为多种功能细胞的潜能;参与多种组织器官(如骨骼和造血系统)的失效细胞的更替及疾病痊愈。随着干细胞研究的不断发展和深入,微重力效应对成体干细胞[5]、胚胎干细胞(embryonic stem cells,ESCs)的影响逐渐成为空间生物学研究的热点。理解微重力对干细胞的影响将有助于阐明空间飞行期间的骨丢失、肌肉萎缩和贫血等生理变化的细胞分子机理,为采取针对性的防护措施提供理论和技术支持。

干细胞是具有无限或长期的自我更新能力和分化产生至少一种成熟特异体细胞能力的细胞[6]。成体干细胞研究最早,但分化潜能有限。ESCs由于其巨大的分化潜能一度成为干细胞研究的热点,但是伦理争议和免疫排斥的问题限制了其临床应用。2007年体细胞重编程获得的类似ESCs潜能的诱导多能干细胞(induced pluripotent stem cells,iPSCs)弥补了上述缺陷,该研究获得2012年诺贝尔生理与医学奖。研究表明成体干细胞的多能性、增殖[5]和分化潜能[3,7-9]受重力的影响。目前,失重条件下ESCs的研究才刚刚开始[10],而微重力对iPSCs的作用尚无报道。作者在此综述了iPSCs的发现及最新研究进展,重点阐述重编程方法的优化及其在航天医学领域中的应用展望,拟为开展微重力对iPSCs影响的研究提供参考。

1 多能干细胞研究简述

多能干细胞包括ESCs、胚胎生殖细胞(embryonic germ cells,EG)、胚胎肿瘤细胞(embryonic carcinoma cells,EC)和iPSCs。有文献[11]将生殖干细胞(multipotent germline stem cells,mGSC)和骨髓的前体细胞(multipotent adult progenitor cell)也并入此列。在畸胎瘤中发现的EC[12]是最早研究的多能干细胞。由于致瘤性、分化潜能有限且不能形成嵌合小鼠,其研究价值逐渐被1981年分离培养成功的小鼠ESCs[13]所取代。1998年John等通过分离原始生殖细胞培养后获得了人EG[14],同年从动物囊胚期内细胞团中分离培养获得了ESCs[15-16]。这3种多能干细胞中ESCs最有研究和应用价值。

成熟的细胞由分化状态被逆转到未分化状态的过程称为细胞重编程[17]。通过重编程可由体细胞获得多能干细胞。目前可实现体细胞重编程的方法包括:细胞核移植[18]、体细胞与多能细胞融合[19-20]、用ESCs提取物处理体细胞[21]以及某些类型细胞在体外培养时自发产生[22-24]。然而这些方法的应用条件复杂、重编程效率低。同时,核移植或细胞融合实验提示筛选出有效的多能性相关的特定因子可能有助于建立简便高效的重编程方法。

2 诱导多能干细胞的建立

受细胞重编程方法的启示,2006年Takahashi等[25]选择24种在小鼠早期胚胎、ESCs或肿瘤细胞中丰富表达的转录因子,通过组合、筛选,发现用Oct4、Sox2、c-Myc和Klf4四个因子可有效地将胎鼠成纤维细胞和小鼠尾尖成纤维细胞诱导成形态和生长特性类似ESCs的克隆,即iPSCs。Thomason等使用慢病毒介导Oct4、Sox2、Nanog和Lin28四个因子获得了人的iPSCs[26],但得到的iPSCs不能形成成年的嵌合体小鼠,且没有生殖系转移(germline transmission)的能力,而这是鉴定多能干细胞的严格标准之一。随后发现其原因是使用了Fbx15启动子驱动的新霉素抗性基因来筛选iPSCs,Fbx15在ESCs中表达量较高,但在自我更新和多潜能性的维持中不是必需的[27]。改进的筛选系统[28-29]以Oct4和Nanog取代Fbx15,得到既高效嵌合成年小鼠、又参与形成生殖系细胞的iPSCs,并获得了iPSCs衍生的后代小鼠。

猴和猪体形与人相仿,器官大小、结构和功能最适合人体移植,因此在小鼠iPSCs的基础上陆续又建立了猴[30]、大鼠[31-32]和猪[33]的iPSCs。此外,大鼠ESCs很难获得,大鼠iPSCs在ESCs未建系的情况下建立,为大鼠的转基因模式动物的建立奠定了基础。

3 重编程方法的优化

根据基因导入方式的不同,重编程方法可分为病毒载体和非病毒载体两类。病毒载体包括逆转录病毒载体和慢病毒载体,其优点是诱导效率高(如新生儿包皮成纤维细胞重编程效率高达0.01%[26]),缺点是外源因子永久整合基因组,有插入突变风险。逆转录病毒载体一般只能转染分裂旺盛的细胞,腺病毒载体可实现外源基因的瞬时表达,但仍有外源基因的整合。非病毒载体的方法包括使用脂质体或piggyBac转座子载体、mRNA或microRNA转染、蛋白质直接介导、小分子化合物联用等。重编程效率低和外源基因整合的风险是上述方法面临的共同难题。

3.1 提高安全性

病毒载体介导的诱导方式由于插入突变而具有诱发肿瘤的风险。非病毒载体的诱导方式包括2A肽非病毒转染法[34]、诱导性表达载体法[35]、Cre/LoxP重组切除法[36]及PB转座子介导法[37]等。其中Cre不能介导载体完全切除,而PB转座子系统可将外源DNA彻底清除,是一种更安全的方法。但是目前完全避免使用病毒或转座子的方法如非整合腺病毒[38]、脂质体[39]和非插入型的附加体(episomal)[40]等转染效率极低,还需要寻找更有效的诱导方法。

某些细胞已表达特定因子,因此只需导入其它几个即可完成重编程过程。研究表明Oct4和Klf4双因子[41-42]或Oct4单因子[43]均可建立iPSCs。有研究证明小分子化合物可替代转录因子,如组蛋白甲基转移酶G9a的抑制剂BIX-01294可替代Oct4[44],随后发现BIX-01294和BayK8644协同Oct4和Klf4[45]、组蛋白去乙酰化酶抑制剂丙戊酸(valproic acid,VPA)协同Oct4和Sox2可诱导成纤维细胞重编程[46]。

更安全的重编程方式是不涉及任何基因修饰,目前仅有蛋白介导的方式。2009年Zhou等[47]利用细胞穿膜肽11R引导四因子的重组蛋白并联合使用VPA成功重编程鼠成纤维细胞,但重编程效率仅0.001%。

3.2 提高重编程的效率

转染效率低及重编程本身的随机性是诱导效率提高的瓶颈。重编程效率与外源因子的诱导水平、内源相应转录因子的表达水平、其它因子过表达或RNAi表达能力等生物因素有关,也与化学物质使用、物理刺激和细胞培养条件等非生物因素有关。最初iPSCs建系效率只有0.02%[25],而减少转录因子以降低肿瘤风险的策略导致重编程效率更低、时程更长,即使所有四因子同时使用时最多也只能达到2%[35,48],短时间内不能得到足量的细胞严重阻碍着iPSCs的临床应用。目前提高重编程效率的途径主要包括筛选小分子化合物、细胞类型和探索新的诱导因子几个方面。小分子化合物除了BIX-01294[44]和VPA[46],DNA甲基化转移酶抑制剂5-aza-cytidine(AZA)[49]、丁酸盐(butyrate)[50]、组蛋白脱乙酰基酶抑制剂丁酸钠和TGF-β信号抑制剂SB431542[51]和糖原合成酶(glycogensynthase kinase-3,GSK-3)抑制剂CHIR990213[52]都能提高重编程效率,其中VPA可提高100多倍。

细胞类型也是影响重编程效率的重要因素。除了小鼠成纤维细胞,胃和肝细胞[34]、神经干细胞[41]、胰腺β细胞[53]、终末分化的B淋巴细胞[35]等重编程效率各不相同[41-43]。胃和肝细胞产生的iPSCs的成瘤性明显低于皮肤成纤维细胞[34]。人源iPSCs的报道较少,除成纤维细胞外,已有报道的源细胞包括人的血液CD34细胞[54]和皮肤角质细胞[55]。逆转录病毒介导四因子重编程青少年角化细胞的效率比成纤维细胞高100多倍,而且时程缩短近一半[55]。

蛋白介导重编程的效率低是因为蛋白导入细胞的效率低,因此寻找导入效率更高的诱导因子如RNA有望解决此问题。Warren等[56]使用四因子的mRNA诱导时程缩短一半,效率提高了100多倍。miR-302和miR-367也有相似的效果[57],原因可能是通过激活Oct4并抑制组蛋白脱乙酰基酶HDAC2而促进iPSCs的形成。另外利用siRNA干扰抑癌基因p53能显著提高重编程效率,同时下调p53和过量表达UTF1甚至可替代c-Myc并提高效率100倍[58],p53缺失时仅需Oct4、Sox2双因子[59]。但是缺失关键抑癌基因的方法将增加基因组的不稳定性或诱导肿瘤的产生,可能带来得不偿失的风险,这提示研究者提高重编程的效率要与iPSCs的安全性兼顾。

物理微环境和机械张力影响间充质干细胞(MSC)分化的证据越来越多,因此除了生物因素,细胞培养条件等物理因素对细胞重编程过程的调控也有必要进行研究。航天特殊环境如微重力、低氧可能影响重编程的效率。已有研究表明低氧条件可以提高重编程效率,促进ESCs向视网膜前体细胞分化[60-61],但是ESCs或iPSCs对机械刺激的响应几乎未见报道。

4 应用

随着基础研究的不断深入,iPSCs在疾病模型构建、药物筛选、细胞治疗中的应用效果显著。利用iPSCs获得人体特异细胞或组织是应用的最终目标。

4.1 疾病模型构建

Jaenisch博士首次用小鼠iPSCs建立人疾病模型[62],并用于治疗人性化的镰刀型贫血症小鼠模型和帕金森病大鼠模型,从理论和实践上为人类单基因遗传疾病治疗奠定基础,也证明了iPSCs治疗复杂疾病的可能性。2009年Ebert等[63]利用患者成纤维细胞重编程的iPSCs成功再现脊髓性肌萎缩症(spinal muscular atrophy,SMA)进行性变性的过程。82岁高龄的女性肌萎缩性侧索硬化症(amyotrophic lateral sclerosis,ALS)病人的成纤维细胞重编程的iPSCs可获得疾病特异性的运动神经元[64],证明慢性病老年患者也可以直接从iPSCs获得疾病特异性模型。用人iPSCs还建立了女性流行性神经发育疾病Rett综合症(Rett syndrome,RTT)[65]、致命性亨廷顿病(Huntington′s disease HD)[66]、X-连锁隐性遗传病进行性假肥大性肌营养不良(duchenne muscular dystrophy,DMD)[67]、21三体导致的特瓦综合症(down syndrome,DS)[68]、豹皮综合症[69]、人I型糖尿病[70]、骨髓增生病(myeloproliferative disorders,MPDs)[71]、范可尼贫血症[71]、肝病[72]、家族性植物神经功能障碍症(falilial dysautonomia,FD)[73]等疾病模型,为发病机制和新颖高效治疗方法的研究提供了有利条件。

建立人iPSCs疾病模型首先要选择取材安全、方便的体细胞,不同体细胞来源的iPSCs保留供体细胞的基因印迹,而且转录、表观遗传和分化能力均有所差异,因此有必要评价不同体细胞来源的iPSCs差异性对疾病模型的安全性、有效性的影响。

4.2 药物筛选

目前已使用疾病特异性的iPSCs模型对FD候选药物激动素Kinetin[73]、针对SMA患者提高SMN蛋白水平的药物VPA和tobramycin、抗血管生成药物Azumanaid ESCs进行了评价,可对iPSCs分化的功能细胞进行药物效果的实时监测,为个性化药物筛选和药效研究提供了广阔的平台。

4.3 细胞治疗

除了建立疾病模型外,患者个体化的iPSCs进行遗传修饰之后定向分化健康细胞来进行细胞移植,理论上可以治疗任何遗传性疾病和退行性疾病。目前通过人iPSCs治疗神经系统疾病[63-64]、I型糖尿病[74]、肝病、肾病等的效果都已经在动物模型中得到验证,人ESCs已进入临床实验。

5 在航天医学中的应用

航天飞行导致一系列生理性改变的主要原因是微重力条件,因此研究微重力效应对细胞功能的影响,特别是对维持组织细胞更新的干细胞的活性和功能的影响,找到关键性靶点是从根本上解决航天医学问题的关键,对胚胎发育生理学也有重要意义。

研究表明,模拟微重力能抑制成体干细胞向力敏感性细胞(如成骨细胞和心肌细胞)的分化,而促进其向力不敏感细胞(如脂肪细胞[7-8])的分化。相对于正常的1G条件,3-D回转器模拟微重力条件有利于维持hMSC细胞增殖和透明软骨向分化潜能[75]、促进肝干细胞的分化能力[3]和MSC向髓核样细胞的分化潜能[76],但是大梯度强磁场模拟微重力效应抑制hMSC早期的成骨向分化[7],回转模拟微重力效应也抑制hMSC成骨向分化、促进脂肪向分化[77]。

模拟微重力条件下mESCs细胞总数减少、细胞增殖活性没有变化、粘附减弱、DNA无损伤,但是影响辐射诱导损伤的修复[10],是否对多潜能的维持和谱系分化能力产生影响亟待研究。局部机械力影响mESCs伸展方向,但分化后的细胞硬度增大,单个ESCs细胞中Oct4表达水平改变[78]。然而此方法或模拟微重力可否激活内源性重编程因子、促进重编程而成为不使用化学因子的更安全的重编程方法仍不明确。模拟微重力对干细胞干性及分化潜能的影响的研究为解决微重力性骨丢失等诸多问题奠定了理论基础,但是力学传导的机制目前并不清楚。iPSCs方法的建立必将为研究胚胎发育复杂的调控机制及遗传疾病机制提供优质的细胞和组织模型,为解决航天医学的基本问题提供新的思路。

[1]Clause K C,Liu L J,Tobita K.Directed stem cell differentiation:The role of physical forces[J].Cell Communication and Adhesion,2010,17(2):48-54.

[2]Li J,Zhang S,Chen J,et al.Modeled microgravity causes changes in the cytoskeleton and focal adhesions,and decreases in migration in malignant human MCF-7cells[J].Protoplasma,2009,238(1-4):23-33.

[3]Majumder S,Siamwala J H,Srinivasan S,et al.Simulated microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/Notch1signaling[J].J Cell Biochem,2011,112(7):1898-1908.

[4]Huang Y,Dai Z Q,Ling S K,et al.Gravity,a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells[J].J Biomed Sci,2009,16(1):87-101.

[5]Gershkovich P M,Gershkovich Iu G,Buravkova L B.Expression of cytoskeleton genes in culture of human mesenchymal stromal cells in different periods of simulating the effects of microgravity[J].Aviakosm Ekolog Med,2011,45(4):39-41.

[6]Alison M R,Poulsom R,Forbes S,et al.An introduction to stem cells[J].J Pathol,2002,197(4):419-423.

[7]Shi D,Meng R,Deng W,et al.Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells[J].Stem Cell Rev,2010,6(4):567-578.

[8]Sheyn D,Pelled G,Netanely D,et al.The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system:A bioinformatics study[J].Tissue Eng Part A,2010,16(11):3403-3412.

[9]Dai Z Q,Wang R,Ling S K,et al.Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells[J].Cell Prolif,2007,40(5):671-684.

[10]Wang Y,An L,Jiang Y,et al.Effects of simulated microgravity on embryonic stem cells[J].PLoS One,2011,6(12):e29214.

[11]Mirzapour T,Tengku A B T I,Movahedin M,et al.Stem cells research and its application:A review[J].Jounal of Applied Science,2011,11(1):163-173.

[12]Solter D.From teratocarcinomas to embryonic stem cells and beyond:A history of embryonic stem cell research[J].Nat Rev Genet,2006,7(4):319-327.

[13]Martin G R.Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J].Proc Natl Acad Sci USA,1981,78(12):7634-7638.

[14]Shamblott M J,Axelman J,Wang S P,et al.Derivation of pluripotent stem cells from cultured human primordial germ cells[J].Proc Natl Acad Sci USA,1998,95(23):13726-13731.

[15]Rossant J.Stem cells from the mammalian blastocyst[J].Stem Cells,2001,19(6):477-482.

[16]Thomson J A,Itskovitz-Eldor J,Shapiro S S,et al.Embryonic stem cell lines derived from human blastocysts[J].Science,1998,282(5391):1145-1147.

[17]Hochedlinger K,Jaenisch R.Nuclear reprogramming and pluripotency[J].Nature,2006,441(7097):1061-1067.

[18]Rodolfa K T,Eggan K.A transcriptional logic for nuclear reprogramming[J].Cell,2006,126(4):652-655.

[19]Tada M,Takahama Y,Abe K,et al.Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells[J].Curr Biol,2001,11(19):1553-1558.

[20]Cowan C A,Atienza J,Melton D A,et al.Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells[J].Science,2005,309(5739):1369-1373.

[21]Hansis C,Barreto G,Maltry N,et al.Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1[J].Curr Biol,2004,14(16):1475-1480.

[22]Jiang Y,Jahagirdar B N,Reinhardt R L,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6893):41-49.

[23]Matsui Y,Zsebo K,Hogan B L.Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture[J].Cell,1992,70(5):841-847.

[24]Guan K,Nayernia K,Maier L S,et al.Pluripotency of spermatogonial stem cells from adult mouse testis[J].Nature,2006,440(7088):1199-1203.

[25]Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.

[26]Yu J,Vodyanik M A,Smuga-Otto K,et al.Induced pluripotent stem cell lines derived from human somatic cells[J].Science,2007,318(5858):1917-1920.

[27]Tokuzawa Y,Kaiho E,Maruyama M,et al.Fbx15is a novel target of Oct3/4but is dispensable for embryonic stem cell self-re-newal and mouse development[J].Mol Cell Biol,2003,23(8):2699-2708.

[28]Okita K,Ichisaka T,Yamanaka S.Generation of germline-competent induced pluripotent stem cells[J].Nature,2007,448(7151):313-317.

[29]Wernig M,Meissner A,Foreman R,et al.In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J].Nature,2007,448(7151):318-324.

[30]Liu H,Zhu F,Yong J,et al.Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J].Cell Stem Cell,2008,3(6):587-590.

[31]Li W,Wei W,Zhu S,et al.Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J].Cell Stem Cell,2009,4(1):16-19.

[32]Liao J,Cui C,Chen S,et al.Generation of induced pluripotent stem cell lines from adult rat cells[J].Cell Stem Cell,2009,4(1):11-15.

[33]Esteban M A,Xu J,Yang J,et al.Generation of induced pluripotent stem cell lines from Tibetan miniature pig[J].J Biol Chem,2009,284(26):17634-17640.

[34]Carey B W,Markoulaki S,Hanna J,et al.Reprogramming of murine and human somatic cells using a single polycistronic vector[J].Proc Natl Acad Sci USA,2009,106(1):157-162.

[35]Hanna J,Markoulaki S,Schorderet P,et al.Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J].Cell,2008,133(2):250-264.

[36]Soldner F,Hockemeyer D,Beard C,et al.Parkinson′s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J].Cell,2009,136(5):964-977.

[37]Kaji K,Norrby K,Paca A,et al.Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J].Nature,2009,458(7239):771-775.

[38]Stadtfeld M,Nagaya M,Utikal J,et al.Induced pluripotent stem cells generated without viral integration[J].Science,2008,322(5903):945-949.

[39]Okita K,Nakagawa M,Hyenjong H,et al.Generation of mouse induced pluripotent stem cells without viral vectors[J].Science,2008,322(5903):949-953.

[40]Yu J,Hu K,Smuga-Otto K,et al.Human induced pluripotent stem cells free of vector and transgene sequences[J].Science,2009,324(5928):797-801.

[41]Kim J B,Zaehres H,Wu G,et al.Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors[J].Nature,2008,454(7204):646-650.

[42]Eminli S,Utikal J,Arnold K,et al.Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2expression[J].Stem Cells,2008,26(10):2467-2474.

[43]Kim J B,Sebastiano V,Wu G,et al.Oct4-induced pluripotency in adult neural stem cells[J].Cell,2009,136(3):411-419.

[44]Shi Y,Do J T,Desponts C,et al.A combined chemical and genetic approach for the generation of induced pluripotent stem cells[J].Cell Stem Cell,2008,2(6):525-528.

[45]Shi Y,Desponts C,Do J T,et al.Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4and Klf4with small-molecule compounds[J].Cell Stem Cell,2008,3(5):568-574.

[46]Huangfu D,Osafune K,Maehr R,et al.Induction of pluripotent stem cells from primary human fibroblasts with only Oct4and Sox2[J].Nat Biotechnol,2008,26(11):1269-1275.

[47]Zhou H,Wu S,Joo J Y,et al.Generation of induced pluripotent stem cells using recombinant proteins[J].Cell Stem Cell,2009,4(5):381-384.

[48]Maherali N,Ahfeldt T,Rigamonti A,et al.A high-efficiency system for the generation and study of human induced pluripotent stem cells[J].Cell Stem Cell,2008,3(3):340-345.

[49]Mikkelsen T S,Hanna J,Zhang X,et al.Dissecting direct reprogramming through integrative genomic analysis[J].Nature,2008,454(7200):49-55.

[50]Mali P,Chou B K,Yen J,et al.Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes[J].Stem Cells,2010,28(4):713-720.

[51]Trokovic R,Weltner J,Manninen T,et al.Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J].Stem Cells Dev,2013,22(1):114-123.

[52]Moraveji S F,Attari F,Shahverdi A,et al.Inhibition of glycogen synthase kinase-3promotes efficient derivation of pluripotent stem cells from neonatal mouse testis[J].Hum Reprod,2012,27(8):2312-2324.

[53]Stadtfeld M,Brennand K,Hochedlinger K.Reprogramming of pancreatic beta cells into induced pluripotent stem cells[J].Curr Biol,2008,18(12):890-894.

[54]Loh Y H,Agarwal S,Park I H,et al.Generation of induced pluripotent stem cells from human blood[J].Blood,2009,113(22):5476-5479.

[55]Aasen T,Raya A,Barrero M J,et al.Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J].Nat Biotechnol,2008,26(11):1276-1284.

[56]Warren L,Manos P D,Ahfeldt T,et al.Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J].Cell Stem Cell,2010,7(5):618-630.

[57]Anokye-Danso F,Trivedi C M,Juhr D,et al.Highly efficient mi-RNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J].Cell Stem Cell,2011,8(4):376-388.

[58]Zhao Y,Yin X,Qin H,et al.Two supporting factors greatly improve the efficiency of human iPSC generation[J].Cell Stem Cell,2008,3(5):475-479.

[59]Kawamura T,Suzuki J,Wang Y V,et al.Linking the p53tumour suppressor pathway to somatic cell reprogramming[J].Nature,2009,460(7259):1140-1144.

[60]Bae D,Mondragon-Teran P,Hernandez D,et al.Hypoxia enhan-ces the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells[J].Stem Cells Dev,2012,21(8):1344-1355.

[61]Yoshida Y,Takahashi K,Okita K,et al.Hypoxia enhances the generation of induced pluripotent stem cells[J].Cell Stem Cell,2009,5(3):237-241.

[62]Hanna J,Wernig M,Markoulaki S,et al.Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J].Science,2007,318(5858):1920-1923.

[63]Ebert A D,Yu J,Rose F F,et al.Induced pluripotent stem cells from a spinal muscular atrophy patient[J].Nature,2009,457(7227):277-280.

[64]Dimos J T,Rodolfa K T,Niakan K K,et al.Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J].Science,2008,321(5893):1218-1221.

[65]Kim K Y,Hysolli E,Park I H.Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome[J].Proc Natl Acad Sci USA,2011,108(34):14169-14174.

[66]Juopperi T A,Kim W R,Chiang C H,et al.Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington′s disease patient cells[J].Mol Brain,2012,5(1):17.

[67]Nakahata T,Awaya T,Chang H,et al.Derivation of engraftable myogenic precursors from murine ES/iPS cells and generation of disease-specific iPS cells from patients with duchenne muscular dystrophy(DMD)and other diseases[J].Rinsho Shinkeigaku,2010,50(11):889.

[68]Mou X,Wu Y,Cao H,et al.Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome[J].Stem Cell Res Ther,2012,3(2):14.

[69]Carvajal-Vergara X,Sevilla A,D′Souza S L,et al.Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome[J].Nature,2010,465(7299):808-812.

[70]Maehr R,Chen S,Snitow M,et al.Generation of pluripotent stem cells from patients with type 1diabetes[J].Proc Natl Acad Sci USA,2009,106(37):15768-15773.

[71]Ye Z,Zhan H,Mali P,et al.Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders[J].Blood,2009,114(27):5473-5480.

[72]Choi S M,Kim Y,Liu H,et al.Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells[J].Cell Cycle,2011,10(15):2423-2427.

[73]Lee G,Papapetrou E P,Kim H,et al.Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs[J].Nature,2009,461(7262):402-406.

[74]Jeon K,Lim H,Kim J H,et al.Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1diabetes mouse model[J].Stem Cells Dev,2012,21(14):2642-2655.

[75]Yuge L,Kajiume T,Tahara H,et al.Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation[J].Stem Cells Dev,2006,15(6):921-929.

[76]Luo W,Xiong W,Qiu M,et al.Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro[J].J Huazhong Univ Sci Technolog Med Sci,2011,31(2):199-203.

[77]Zayzafoon M,Gathings W E,McDonald J M.Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis[J].Endocrinology,2004,145(5):2421-2432.

[78]Chowdhury F,Na S,Li D,et al.Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells[J].Nat Mater,2010,9(1):82-88.

猜你喜欢
体细胞纤维细胞编程
Tiger17促进口腔黏膜成纤维细胞的增殖和迁移
滇南小耳猪胆道成纤维细胞的培养鉴定
编程,是一种态度
元征X-431实测:奔驰发动机编程
浙江:诞生首批体细胞克隆猪
新型冠状病毒入侵人体细胞之谜
编程小能手
纺织机上诞生的编程
内皮前体细胞亚型与偏头痛的相关性分析
非洲菊花托的体细胞胚发生及植株再生