瞿泓滢 陈懋弘 杨富初 高志辉 王要武 赵海杰 余长发QU HongYing, CHEN MaoHong, YANG FuChu, GAO ZhiHui, WANG YaoWu, ZHAO HaiJie and YU ZhangFa
1. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 1000372. 长安大学地球科学与资源学院,西安 7100643. 广东省大宝山矿业有限公司,韶关 5120004. 中国地质大学地球科学与资源学院,北京 1000831. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 2. College of Earth Science and Resources, Chang’an University, Xian 710064, China3. Dabaoshan Mining Corporation Limited, Shaoguan 512000, China4. School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China2013-08-01 收稿, 2013-10-20 改回.
钦州-杭州成矿带(简称钦杭带)是我国重要的金属矿产资源基地,也是世界上独具特色的与花岗岩有关成矿作用最为强烈的地区之一,其内矿种多,储量大,尤其以与中生代花岗岩类有关的钨、锡、锂、铍、铌、钽、铋、钼、金、银、铅、锌、锑、铜、稀土、铀等金属的大规模成矿作用较为突出,长期受到国内外地学界的广泛关注(蒋少涌等,2008;杨明桂等,2009;毛景文等,2004a, 2007;徐德明等,2012;郭春丽等,2013)。粤北大宝山铜多金属矿床是钦杭成矿带中一个重要的铜、钼、铁、铅、锌、钨大型多金属矿床(毛景文等,2011)。前人对大宝山层状铜矿体的矿床地质(葛朝华和韩发,1986)、成矿条件(葛朝华和韩发,1987)、成矿机理(刘孝善和周顺之,1985;刘姤群等,1985;汤吉方等,1992;蔡锦辉和刘家齐,1993;樊太昌等,1994)、成矿模式(罗年华,1985;庄明正,1986;黄书俊等,1987;何金祥等,1996;宋世明等,2007)等有过研究,并对矿区的花岗闪长斑岩和次英安斑岩进行了地球化学和同位素年代学研究(刘姤群等,1985;葛朝华等,1987;汤吉方等,1992;蔡锦辉和刘家齐,1993;樊太昌等,1994),但关于大宝山矿床的成因长期以来存在着不同认识, 有“海底火山热液喷流沉积成因”(葛朝华和韩发,1986,1987) 与“岩浆热液成因”(刘姤群等,1985;黄书俊等,1987;汤吉方等,1992;蔡锦辉和刘家齐,1993,1994)之争。因此,本次研究从粤北大宝山矿床中层状铜矿体的成矿时代入手,厘定其成矿时代,并探讨其成因。
钦杭成矿带亦称十万大山-杭州成矿带(简称十杭带),在大地构造位置上属于扬子与华夏两个古陆块在晚元古代碰撞拼接带,沿其发育一系列铜多金属及钨锡多金属矿产,构成了一个多金属成矿带。该成矿带大致自西南端的广西钦州湾、经湘东和赣中延伸到东北端浙江杭州湾。钦杭结合带及其旁侧区域是华南地区最为重要的Cu-Au-Pb-Zn-Ag多金属成矿带,分布着一大批大型特大型铜金铅锌钽铀矿床,也有大批钨锡多金属矿床(蒋少涌等,2008; 杨明桂等,2009; 毛景文等,2011; 郭春丽等,2013)。钦杭结合带是一条晚元古代碰撞对接带,在中晚侏罗世再次活化,于表壳显示出一种先挤压后伸展的环境。因此,沿钦杭带不仅有元古代海底喷流型铜锌矿床,而且更多还有与中生代中酸性和酸性花岗岩类有关的铜多金属矿床和钨锡多金属矿床(毛景文等,2011)。
粤北大宝山铜多金属矿床在大地构造位置上位于南岭东西向构造带南侧,北东向断裂与近东西向大东山-贵东构造岩浆岩带的复合部位。矿区出露地层主要为寒武系浅变质砂页岩及板岩,中、下泥盆统桂头群组砂砾岩及砂页岩,中泥盆统东岗岭组灰岩、上泥盆统天子岭组灰岩和下侏罗统兰塘群组砂页岩。矿区断裂构造发育,主要有近东西向船肚-大宝山断裂、北东-南北向九曲岭断裂和徐屋断裂以及北北西向的大宝山断裂和丘坝断裂,沿船肚-大宝山断裂侵入的岩体被九曲岭断裂分成东西两部分,即船肚花岗闪长斑岩体和大宝山花岗闪长斑岩体、次英安斑岩体(图1)。
大宝山矿床包括大宝山主体铜多金属矿床和船肚钼钨矿床两部分(图1),大宝山主体铜多金属矿床由产于中泥盆世碳酸盐岩中的层状铜铅锌多金属矿体、产于晚泥盆世碎屑岩中的似层状、透镜状菱铁矿体以及这两类矿体之上的风化淋滤型褐铁矿体组成。船肚钼钨矿床主要由斑岩-矽卡岩型矿体组成。层状铜矿体,似层状、透镜状菱铁矿体以及风化淋滤型褐铁矿体,集中在大宝山向斜中,呈北北西向分布,上部为风化淋滤型褐铁矿体,中部为似层状、透镜状菱铁矿体,下部为层状铜矿体(空间位置不同可分为东部多金属矿带和西部多金属矿带),层状铜矿体位于大宝山钼钨多金属矿床矿带的南段,斑岩型钼矿床则围绕大宝山花岗闪长斑岩体呈环型分布,而矽卡岩型钨钼矿床则分布在船肚花岗闪长斑岩体南侧呈东西向产出。
大宝山矿床中的层状铜矿体赋存于与九曲岭-大宝山次英安斑岩接触的东岗岭下亚组碳酸盐岩地层中,呈近南北向多层状分布,单个矿体为层状、似层状、透镜状,沿走向和倾向均有分枝复合现象。矿石类型主要为磁黄铁矿型铜矿石和黄铁矿型铜矿石。矿石矿物为黄铜矿、黄铁矿、磁黄铁矿、闪锌矿,脉石矿物为石英、绢云母、绿帘石、绿泥石、绿柱石、阳起石、黑云母。主要围岩蚀变为硅化、绢云母化、绿泥石化、碳酸盐化、黑云母化、钾长石化、透闪石-阳起石化,其中,绢云母化岩石呈浅灰色、深灰色或暗绿色,风化后呈杂色,绢云母化在砂泥质页岩及矿体两侧围岩中广泛分布。
根据野外穿插关系、矿石结构构造、围岩蚀变及矿物共生组合等特征,粤北大宝山铜多金属矿床形成过程可分为内生成矿期和表生氧化期,其中,内生成矿期分为矽卡岩阶段、退化蚀变阶段、硫化物阶段和碳酸盐阶段(图2)。
图1 粤北大宝山矿区地质简图1-上侏罗统兰塘群组砂岩;2-上泥盆统锡矿山组粉砂质页岩;3-上泥盆统佘田桥组灰岩;4-中泥盆统棋梓桥组泥质粉砂岩;5-中泥盆统桂头群组砂砾岩;6-寒武系八村组变质砂页岩;7-花岗闪长斑岩;8-次英安斑岩;9-铁帽;10-矽卡岩型钼钨矿体;11-斑岩型钼钨矿体;12-黄铁矿化;13-断层;14-地质界线Fig.1 The geological map of the the Dabaoshan Cu polymetallic ore deposition and the sample position1-sandstone in Lantangqun Fm., Upper Jurassic; 2-silty shale in Xikuangshan Fm., Upper Devonian; 3-limestone in Shetianqiao Fm., Upper Devonian; 4-siltstone in Qiziqiao Fm., Middle Devonian; 5-sandstone in Guitouqun Fm., Middle Devonian; 6-sandstone in Baci Fm., Cambrian; 7-granodioritic porphyry; 8-dacite porphyry; 9-gossan; 10-skarn-type Mo-W ore body; 11-porphyry-type Mo-W ore body; 12-pyrite mineralization; 13-fault; 14-geological borderline
图2 粤北大宝山铜多金属矿床矿物生成顺序表Fig.2 Mineral generation sequence in the Dabaoshan Cu polymetallic ore deposition, northern Guangdong Province
①矽卡岩阶段:在超临界条件下,含钙质灰岩与成矿流体发生双交代反应,生成基本不含水的钙铁硅酸岩矿物,形成了石榴石、透辉石以及阳起石、透闪石等矽卡岩矿物,伴生少量磁铁矿浸染。
②退化蚀变阶段:黑云母化在次英安斑岩中表现强烈,呈细鳞片集合体的团块状或微脉状交代长石和角闪石等矿物。
③矿石-硫化物阶段:包括钼矿化阶段和铜铅锌矿化阶段。
钼矿化阶段:辉钼矿-黄铁矿-石英组合,为钼矿的主要成矿阶段。
铜铅锌矿化阶段:为矿床的主要成矿时期,同与之共生的绢云母化、绿泥石化、硅化一起叠加在先形成的蚀变矿物之上,交代结构发育。该阶段金属矿物结晶顺序为磁黄铁矿-黄铁矿-黄铜矿-(辉铋矿)-闪锌矿-方铅矿。
④石英-硫化物阶段:伴生少量的黄铁矿化和铅锌矿化。
⑤碳酸盐阶段:多见于矿床的上部和最外侧,伴生少量黄铁矿和铅锌矿化。
根据室内显微镜下观察,黄铁矿和辉钼矿为同期(图3h, j),黄铁矿和黄铜矿同期(图3f),黄铁矿为热液期黄铁矿,细粒,与辉钼矿、黄铜矿、绢云母共生(图3)。
图3 大宝山主要矿石矿物和脉石矿物以及产出方式显微照片(a)-绢云母白云石化岩(主要矿物为白云石、石英、绢云母、绿帘石、绿泥石、黄铁矿);(b)-绢云母化红柱石斑点状炭质板岩;(c)-碎裂岩化黄铁绢英岩(主要矿物为绢云母、白云母、石英、黄铁矿);(d)-闪锌黄铁矿石;(e)-辉钼矿石;(f)-黄铜黄铁矿石;(g)-辉钼矿石;(h)-辉钼黄铁矿石;(i)-黄铁矿石;(j)-辉钼黄铁矿石Fig.3 Ore minerals and gangue minerals, and micro pictures for output mode(a)-sericite dolomitizatin rock (minerals: dolomite, quartz, sericite, epidote, chlorite, pyrite); (b)-sericitization andalusite spotty carbonaceous slate; (c)-cataclasite pyrite Juanying rock(minerals: sericite, mica, quartz, pyrite); (d)-sphalerite-pyrite; (e)-molybdenite; (f)-copper-pyryte; (g)-molybdenite; (h)-molybdenite-pyrite; (i)-pyrite; (j)-molybdenite-pyrite
本次工作在大宝山矿区铜采场877m水平花岗闪长斑岩体内采集了9件含辉钼矿样品,以石英网脉形式产出,沿裂隙面发育辉钼矿、黄铁矿。铜采场矿体两侧以及矿体上盘中泥盆统棋梓桥组泥质粉砂岩、下盘中泥盆统桂头群组砂砾岩均有绢云母化,在矿体上下盘绢云母化围岩中采集2件云英岩样品,伴有黄铜矿化、绿泥石化。
本次研究中的辉钼矿Re-Os等时线年龄测试分析在国家地质实验室测试中心Re-Os同位素实验室完成。分析方法参见文献(Shirey and Walker,1995;杜安道等,2001),简述如下。准确称取辉钼矿样品,通过长细颈漏斗加入到Carius管(一种高硼厚壁耐高压大玻璃安瓿瓶)底部。缓慢加干冰或液氮到有半杯乙醇保温杯中,调节温度到-80~-50℃,将装有样品的Carius管放到该保温杯中,把准确称取的185Re和190Os混合稀释剂通过长颈漏斗加入到Carius管底部,再加入2mL 10mol/L HCL和4mL 16mol/L HNO3。溶液冻结,用丙烷氧气火焰并加热封好Carius管的细颈部位。待回温后,放入两端有带孔螺旋帽的不锈钢套管内。将套管轻轻放入鼓风烘干箱内,逐渐升温到200℃,保温24h。在底部冷冻的情况下,打开Carius管,并用40mL水将管中溶液转入蒸馏瓶中。用40mL水将Carius管中液体转入蒸馏瓶中,105~110℃蒸馏50min,用10mL水吸收蒸出的OsO4。此时的水吸收液经适当稀释可直接用于ICP-MS(等离子体质普法)测定Os同位素比值。将蒸馏残液倒入150mL Teflon(聚四氟乙烯)烧杯中待分离Re。将第一次蒸馏残液置于120℃电热板上,加热至干。加少量水反复加热赶酸(降低酸度)。加入10mL 5mol/L NaOH,稍微加热,促进转为碱性介质。转入50mL聚丙烯离心管中,离心,取上清液转入120mL Teflon分液漏斗中。加入10mL丙酮,振荡1min萃取Re。静止分相,弃去水相。加2mL 5mol/L NaOH溶液到分液漏斗中,振荡2min,洗去丙酮相中的杂质。离心分相,弃去水相。排丙酮到150mL的已加有2mL水的Teflon烧杯中。在电热板上50℃加热蒸发丙酮。继续加热溶液至干。加数滴浓HNO3和φ=30%(体积分数)的H2O2,加热蒸干以除去残存的Os。用数亳升稀HNO3溶解残渣,稀释到HNO3浓度为2%。备ICP-MS测定Re同位素比值。如含Re溶液中盐量超过1mg/mL,需采用阳离子交换除去Na。Re-Os同位素比值采用TJA X-series ICP-MS测定(美国Thermo公司)。Re选择质量数为185、187,用190监测Os。Os选择质量数为186、187、188、189、190、192,用185监测Re。空白水平Re为0.01575×10-9,Os普为0.00015×10-9,187Os为0.0002×10-9。ICP-MS测试Re-Os含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测的分馏校正误差、待分析样品同位素比值测量误差,置信水平95%。模式年龄的不确定度还包括衰变常数的不确定度(1.02%),置信水平95%。模式年龄t计算公式如下:
t=1/λ[ln(1+187Os/187Re)]
图4 粤北大宝山铜矿中辉钼矿Re-Os同位素等时线及模式年龄加权平均值Fig.4 Molybdenite Re-Os isochron and weighted mean of the Dabaoshan Cu deposit in northern Guangdong Province, South China
本次研究中绢云母Ar-Ar年龄是在中国地质科学院地质研究所Ar-Ar年代学同位素实验室完成。将样品粉碎过筛后,对碎样样品进行水漂、磁选和重液分离等步骤,分选出60~80目大小的绢云母样品,在双目镜下手工挑选200mg,其纯度为99.9%,送实验室进行测试。选纯的绢云母用超声波清洗。超声清洗过程中要注意清洗液的选择并严格控制时间。一般先用经过两次亚沸蒸馏净化的纯净水清洗3次,每次3min,在此过程中矿物表面和解理缝中在天然状态下和碎样过程中吸附的粉末和杂质被清除。然后在丙酮中清洗两次,每次3min,在此过程中,矿物表面吸附的油污等有机物质被清除。清洗后的样品被封进石英瓶中送核反应接受中子照射,照射工作在中国原子能科学研究院的“游泳池堆”中进行。使用H8孔道,中子流密度约为6.0×1012n·cm-2S-1。照射总时间为3000min,积分中子通量为1.13×1018n·cm-2。样品的阶段升温加热使用电子轰击炉,每一个阶段加热30min,净化30min。质谱分析在MM-1200B质谱计上进行,每个峰值均采集8组数据。所有的数据在回归到时间零点值后再进行质量歧视校正、大气氩校正、空白校正和干扰元素同位素校正。系统空白水平为m/e=40、39、37、36分别小于6×10-15mol、4×10-16mol、8×10-17mol和2×10-17mol。中子照射过程中所产生的干扰同位素校正系数通过分析照射过的K2SO4和CaF2来获得,其值为(36Ar/37Ar)Ca=0.0002389、(40Ar/39Ar)K=0.004782、(39Ar/37Ar)Ca=0.000806。37Ar经过放射性衰变校正,40K衰变常数λ=5.543×10-10年-1(Steiger and Jager,1977)。用ISOPLOT程序计算坪年龄和等时线年龄(Ludwig,2001),坪年龄误差以2σ给出。中子照射、样品处理和仪器测试均用国内标样黑云母(ZBH-25标准年龄为132.7Ma,K含量为7.6%)做监控。详细实验流程见有关文章(陈文等,2006)。
大宝山的9件辉钼矿样品使用ICP-MS方法测定,得到模式年龄为165.7±2.3Ma~163.4±2.4Ma(2σ),平均164.8±2.4Ma,加权平均值为164.8±0.8Ma,样品模式年龄十分接近(表1)。采用ISOPLOT软件(Ludwig,2003),187Re衰变常数1.666×10-11a-1,绘制等时线图和计算年龄及误差,不确定度0.49%。所获得的9件样品数据进行187Re-187Os等时线拟合得到等时线年龄为166.0±3.0Ma,初始Os为(-0.7±2.8)×10-9(MSWD=0.52),所得到的等时线年龄与相应的模式年龄几乎一致(表1、图4)。
大宝山2件绢云母样品经过11~13个阶段不等的逐级加热后得到了40Ar/39Ar年龄数据表,从而得到了样品中绢云母矿物的40Ar/39Ar坪年龄图谱及40Ar/39Ar等时线年龄,样品测定结果见表2,年龄图谱见图5。样品DB011中的绢云母在850~980℃的温度范围内,所获得的坪年龄为166.6±1.6Ma;样品DB020中的绢云母在820~920℃的温度范围内,所获得的坪年龄为171.7±2.0Ma。在反等时线图上(图5),样品DB011和DB020对应的年龄分别为167.0±2.0Ma和161.7±1.7Ma,对应的初始Ar分别为352±220和386±81,与大气Ar比值295.5±0.5有一定误差,可能暗示有过剩Ar的存在(陈文等,2011),但样品的坪年龄与以等时线年龄基本吻合,与辉钼矿Re-Os等时线年龄也基本吻合,说明两种方法测试的成矿年龄真实可信。
表1粤北大宝山铜矿中辉钼矿Re-Os同位素数据
Table 1 Result of Re-Os dating of molybdenite from the Dabaoshan Cu deposit in northern Guangdong Province, South China
样品号样重(g)Re(×10-6)普Os(×10-9)187Re(×10-6)187Os(×10-9)模式年龄(Ma)测定值2σ测定值2σ测定值2σ测定值2σ测定值2σDB036(1/5)0.0102397.620.870.02100.094461.360.55167.31.5163.42.4DB036(2/5)0.0103066.440.540.02100.094041.760.34114.51.0164.42.4DB036(3/5)0.0100189.010.740.06990.072555.940.46153.81.4164.82.4DB036(4/5)0.0201284.370.670.02930.035853.030.42145.91.3164.92.4DB036(5/5)0.01020101.90.80.16260.141664.030.53177.01.4165.72.3DB038(2/6)0.00838139.71.30.28670.145087.790.84240.92.4164.52.6DB038(4/6)0.0125170.880.700.49790.096444.550.44122.71.1165.12.6DB038(6/6)0.0033392.190.940.53960.181457.940.59159.31.3164.82.5DB0470.01005135.41.10.84770.094985.110.68235.22.0165.72.3
图5 粤北大宝山铜矿绢英岩中绢云母的40Ar/39Ar年龄谱与反等时线图Fig.5 40Ar/39Ar step heating age spectrum and inverse isochron diagram of sericite in the Dabaoshan Cu deposit
表2粤北大宝山铜矿绢英岩中绢云母的40Ar/39Ar阶段加热分析同位素数据
Table 2 Results of40Ar/39Ar incremental heating experiment for sericite in Dabaoshan Cu deposit, northern Guangdong Province
T(℃)40Ar39Ar()m36Ar39Ar()m37Ar39Ar()m38Ar39Ar()m40Ar(%)F39Ar(×10-14mol)39Ar(Cum.)(%)Age(Ma)±1σ(Ma)DB011绢云母,W=32.34mg,J=0.002597,Totalage=165.2Ma,Plateauage=166.6±1.6Ma(850~980℃),inverseisochronalage=167.0±2.0Ma(850~940℃),normalisochronalage=167.0±8.2Ma(850~940℃)70039.45070.02200.00000.023683.5332.95330.130.96148.12.880037.52760.00480.00000.014196.2436.11681.4311.67161.71.685038.01720.00160.00000.012798.7337.53471.6924.32167.81.690037.79240.00140.22220.013298.9537.40132.4742.76167.21.694037.54390.00030.00000.012599.7137.43632.4761.20167.41.698036.92200.00120.28030.013399.0936.59521.9976.09163.81.6103036.73810.00140.07090.013298.9136.34091.6288.19162.71.6108036.73250.00060.00000.012999.5336.55901.0095.69163.61.7114036.96540.00300.00000.014097.5536.06150.4599.08161.51.9124038.68040.00080.00000.011199.3838.44180.1199.91171.72.0140077.80730.01670.00000.000093.6772.88120.01100.0031322DB020绢云母,W=38.28mg,J=0.002523,Totalage=168.8Ma,Plateauage=171.7±2.0Ma(820~920℃),inverseisochronalage=161.7±1.7Ma(820~920℃),normalisochronalage=162.0±3.3Ma(820~920℃)70044.34870.04120.00000.024572.5432.16950.241.21148.86.277039.59950.01130.00000.015191.5836.26471.528.88166.81.782039.04920.00510.00000.013596.1437.54312.0519.25172.51.887037.96530.00190.04010.012998.5237.40423.3436.10171.81.792037.46150.00080.00370.012499.3437.21614.8160.38171.01.695036.66400.00080.00000.012499.3336.41732.3372.16167.51.698036.24530.00050.00000.012199.5936.09522.0582.54166.11.6101036.01400.00100.08650.012899.1535.71171.5090.11164.41.6104036.12810.00140.00000.012598.8235.70301.0295.24164.41.6108036.65970.00270.00000.013197.7735.84290.6298.37165.01.6113039.28630.00790.11130.014994.0636.95480.2199.45169.92.1120045.47700.01430.00000.012790.6841.24040.0899.88188.64.0140083.69910.19474.89100.075031.6626.60340.02100.0012422
注:表中下标m代表样品中测定的同位素比值,F指放射成因40Ar与K生成的39Ar比值
斑岩-矽卡岩型矿化和层状矿化组成的复合型铜多金属矿床中层状铜矿体的成因一直是我国矿床学研究的焦点问题。长期以来有海底喷流成因和斑岩-矽卡岩型成因两种主要分歧。本次研究测得大宝山花岗闪长斑岩中辉钼矿Re-Os模式年龄为165.7±2.3Ma~163.4±2.4Ma(2σ),加权平均值为164.8±0.8Ma,对应的等时线年龄为166.0±3.0Ma。层状铜矿体中绢云母Ar-Ar年龄绢云母Ar-Ar坪年龄169±1.8Ma,反等时线年龄为164±1.8Ma。辉钼矿Re-Os等时线年龄与绢云母Ar-Ar年龄在误差范围内基本一致,可以厘定大宝山层状铜矿体的年龄。年龄结果表明斑岩-矽卡岩与层状铜矿体为同一成矿系统,成因上与侏罗纪花岗质岩浆侵位密切关系。事实上,最近几年在这一方面研究也取得了一些进展,例如,毛景文等(2009)对安徽铜陵矿集区的解剖研究,提出一个矿床模型,认为斑岩-矽卡岩-似层状铜矿为同一成矿系统,均与白垩纪花岗岩侵位密切相关。Sillitoe (2010)针对全球同类铜矿床的系统研究,得出了类似的结论。
图6 华南中生代金属矿床年龄(b)和成矿岩体年龄(a)分布直方图(据Mao et al.,2013)Fig.6 Histogram of isotopic chronology of Mesozoic metallic ore deposits (b) and related granites (a) in South China (after Mao et al., 2013)
华南地处欧亚大陆东南缘,濒邻西太平洋,由华夏和扬子古陆组成。华南地区NEE向斑岩型或矽卡岩型铜矿和铅锌矿带平行分布,代表性矿床为江西德兴、永平、东乡和湖南七宝山,粤北大宝山铜多金属矿,长江中下游多金属成矿带和湘南宝山-黄沙坪铅锌矿带(毛景文等,2004b)。华南存在的许多层状铜多金属硫化物矿床通常也被一些学者论证为海底喷气作用形成的块状硫化物矿床(如顾连兴等,2003),成为成因争论的焦点。华南地区金属矿床成矿作用主要出现在两个时期,170~126Ma和110~80Ma(毛景文等,2004a,图6)。本次研究获得粤北大宝山斑岩-矽卡岩型矿床中辉钼矿Re-Os等时线年龄为166.0±3.0Ma,与毛景文等(2004a)测得大宝山铜矿辉钼矿Re-Os同位素模式年龄164.7±3Ma基本吻合;层状铜矿体中2件绢云母样品的Ar-Ar反等时线年龄分别为167.0±2.0Ma和161.7±1.7Ma,在误差范围内与辉钼矿Re-Os等时线年龄基本一致,可以厘定大宝山层状铜矿体的年龄,表明成因上与侏罗纪花岗质岩浆侵位密切关系。
在华南地区,中生代金属矿床分布的基本格局是东部金属矿床组合都明显地显示出与岩浆活动的亲缘关系,而西部大多数矿床则为卡林型金矿、密西西比型铅锌矿和似密西西比型锑汞矿。在东部金属矿床有一种大致的分带现象,北部以铜矿为主,中部的南岭地区以钨锡和稀土、稀有金属矿为主,南部的东南沿海地区以锡矿和金银矿为主(毛景文等,2004a, 2008; Maoetal., 2013)。东部与西部的矿床组合都是形成于中生代,在中生代华南地区同时受到太平洋板块和古特提斯洋板块的作用(任纪舜等,1998)。华南地区,以南岭中部(赣南湘南粤北)为中心,在空间上存在着一个巨型金属矿床分带(童潜明等,1995;毛景文等,1998),从中心向外为钨锡钼铋铍带、铜锡铅锌带和金锑汞带。钨锡钼铋铍带中的矿床与壳源型花岗岩关系密切,其成矿时代主要集中于160~150 Ma(毛景文等, 2004a, 2007, 2008; Maoetal., 2006, 2013;Yuanetal., 2007, 2008, 2011; 袁顺达等,2012a, b);铜锡铅锌带中部分矿床(铜矿和铅锌矿)与壳幔同熔形成的花岗岩有关,另一部分矿床(锡矿和锡铅锌锑汞矿)与地壳重熔型花岗岩有关;金锑汞带中很少见到花岗质岩浆活动。
对大宝山花岗闪长斑岩年龄,锆石U-Pb年龄为176±3Ma~175.3±3Ma,加权平均结果为175.8±1.5Ma(毛景文等,2004a),王磊等(2010)采用LA-ICP-MS锆石U-Pb法对大宝山花岗闪长斑岩定年,结果为175.8±1.5Ma,为燕山早期。本次研究获得粤北大宝山斑岩-矽卡岩型矿床中辉钼矿Re-Os等时线年龄为166.0±3.0Ma,大宝山铜矿2件样品的Ar-Ar反等时线年龄分别为167.0±2.0Ma和161.7±1.7Ma,晚于前人采用锆石U-Pb法测得的岩体年龄,可见与成矿有关的岩体为花岗闪长斑岩。
中生代中国东部发生了多期次强烈的构造-岩浆活动和大规模成矿作用(华仁民等,1999;毛景文等,1999,2000),伴随一系列重大的地质事件,即华北和华南地块的碰撞对接、地球动力学方向大调整以及岩石圈大减薄,区内的火山活动、岩浆侵位、生物演变和成矿作用亦受其制约(毛景文等,2004a,2007, 2008, 2011; Maoetal., 2006, 2013)。华南地区在白垩纪以来存在岩石圈减薄事件(Gilderetal.,1991,1996;Chungetal.,1997;李献华等,1997;Xuetal.,2000;Xuetal.,2002;邹和平,2001;孙涛和周新民,2002;贾大成等,2003)。华南地区岩石圈伸展主要可以归并为180~155Ma、145~125Ma和110~75Ma 三个阶段,这三个阶段的大量基性岩脉形成与成矿作用发生的170~150Ma、140~125Ma和110~80Ma 三个时间段基本吻合,两者是同一地球动力学演化过程的产物(毛景文等,1999, 2004a;毛景文和王志良,2000)。华南地区中生代成矿作用的最大特点是几乎绝大多数矿床的形成与花岗质岩浆活动关系密切,花岗岩或提供物质和能量或仅仅提供能量。从成矿物质考虑,矿床可以分为壳幔混源和壳源两大类型,铜锡铅锌带中矿床中部分矿床(铜矿和铅锌矿)与壳幔同熔形成的花岗岩有关,在170~150Ma期间,沿江山-绍兴断裂、湘南和粤北出现了几个相互平行走向近东西的伸展带,壳幔强烈作用形成一系列I型花岗岩和富碱花岗斑岩类,其中部分经过强烈分异演化的花岗质岩体伴随有斑岩铜矿化和铜铅锌多金属矿化。135Ma之后,中国大陆,乃至东亚大陆边缘处于持续伸展阶段,Goldfarbetal.(2007)、毛景文等(2007,2008,2011)、Maoetal.(2013)认为应归属于太平洋板块运动方向发生转向,由原来的斜俯冲转向几乎平行大陆边缘运动。在华南地区,成矿作用集中发生在火山盆地、断陷盆地和变质核杂岩中。拆离构造是主要的控矿构造,而与成矿有关的岩石显示为多来源,上地幔-下地壳来源(如紫金山斑岩-浅成低温热液型铜金银矿)和上地壳来源(如银岩、个旧和大厂锡矿)。这一期成矿作用在钦杭带仅仅出现在西南段的云开-大瑶山地区,而且矿化强度大,矿床类型多,绝大多数矿床分布在盆地及其周缘。粤西-桂东南地区白垩纪矿化是中国东部大陆边缘成矿的一部分,也可能正是由于沿古钦杭结合带,壳幔相互作用强烈,成岩成矿不仅强度大,而且出现多样性,各种类型矿产,钨锡钼铜铅锌金银锰在100~80Ma时间段巨量聚集。
(1)粤北大宝山铜多金属矿床中辉钼矿187Re-187Os模式年龄为165.7±2.3Ma~163.4±2.4Ma(2σ),加权平均年龄为164.8±0.8Ma,对应等时线年龄为166.0±3.0Ma;绢英岩中绢云母矿物的40Ar/39Ar坪年龄为169.2±1.8Ma,反等时线年龄为164.0±1.9Ma,表明粤北大宝山层状铜矿体形成于早侏罗世。
(2)粤北大宝山矿区与层状铜矿体同期的辉钼矿样品Re-Os模式年龄为165.7±2.3Ma~163.4±2.4Ma(2σ),平均164.81±2.43Ma,加权平均值为164.83±0.80Ma,等时线拟合得到等时线年龄为166.0±3.0Ma;绢英岩样品中绢云母矿物的40Ar/39Ar坪年龄为169.2±1.8Ma,反等时线年龄为164.0±1.9Ma。年龄数据表明粤北大宝山斑岩-矽卡岩与层状铜矿体为同一成矿系统,成矿岩体为花岗闪长斑岩,成因上与侏罗纪花岗质岩浆侵位密切关系。结合前人的研究成果,可以认为位于钦杭带边缘的粤北大宝山铜多金属矿床与古太平洋板块俯冲具有成因联系。
致谢广东省地质局七〇五地质大队黎洲辉总工程师和广东省大宝山矿业有限公司有关人员为本研究的野外地质工作提供了大力协助,特此致谢!
Cai JH and Liu JQ. 1993. Research and its application on the inclusions characteristics in the Dabaoshan polymetallic deposit, northern Guangdong. J. Mineral. Petrol., 13(1): 33-40 (in Chinese with English abstract)
Cai JH and Liu JQ. 1994. The age of the magmatic rocks of Dabaoshan polymetallic ore field in North Guangdong. Guangdong Geology, 8(2): 45-52 (in Chinese with English abstract)
Chen W, Zhang Y, Zhang YQ, Jin GS and Wang QL. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateau: Evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4): 867-872 (in Chinese with English abstract)
Chen W, Wan YS, Li HQ, Zhang ZQ, Dai TM, Shi ZE and Sun JB. 2011. Isotope geochronology: Technique and application. Acta Geologica Sinica, 85(11): 1917-1947 (in Chinese with English abstract)
Chung SL, Hai C, Jahn BM, O’Reilly SY and Zhu BQ. 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleocene volcanism in South China prior to the South China Sea opening. Lithos, 40(2-4): 203-220
Du AD, Zhao DM, Wang SX, Sun DZ and Liu DY. 2001. Precise Re-Os dating for molybdenite by id-ntims with carius tube sample preparation. Rock and Mineral Analysis, 20(4): 247-252 (in Chinese with English abstract)
Fan TC, Zhong SR, Liu S and Li GC. 1994. Metallogenic series and model in Dabaoshen-Xueshanzhang area, north Guangdong Province. Contributions to Geology and Mineral Resources Research, 9(3): 48-58 (in Chinese with English abstract)
Ge CH and Han F. 1986. Submarine volcanic hydrothermal sedimentary origin of the Dabaoshan iron and polymetalic sulfide deposit. Mineral Deposits, 5(1): 1-12 (in Chinese with English abstract)
Ge CH and Han F. 1987. Geology and Geochemistry of the Exhalation-sedimentary Genesis Ore Deposit at Dabaoshan, Guangdong Province. Beijing: Science and Technology Publishing House, 11-12 (in Chinese)
Gilder SA, Keller GR, Luo M and Goodell PC. 1991. Eastern Asia and the western Pacific timing and spatial distribution of rifting in China. Tectonophysics, 198(2-4): 225-243
Gilder SA, Gill J, Cor RS, Zhao X, Liu ZW, Wang GX, Yuan KR, Liu WL, Kuang GD and Wu HR. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysics Research, 101(B7): 13137-16154
Goldfarbl RJ, Hart C, Davis G and Geoves D. 2007. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Economic Geology, 102(3): 341-345
Gu LX, Hu W, Ni P, He JX, Xu YT, Lu JJ, Lin CM and Li WQ. 2003. New discussion on the South China-type massive sulphide deposits formed on continental crust. Geological Journal of China Universities, 9(4): 592-608 (in Chinese with English abstract)
Guo CL, Xu YM, Lou FS and Zheng JH. 2013. A comparative study of the Middle Jurassic granodiorite related to Cu and the Late Jurassic granites related to Sn in the Qin-Hang metallogenic belt and a tentative discussion on their tectonic dynamic setting. Acta Petrologica et Mineralogica, 32(4): 463-484 (in Chinese with English abstract)
He JX, Xu KQ and Gu LX. 1996. Recognization of different compositional textures of metamorphism-origin pyrrhotites from Mashan and Dabaoshan deposits. Earth Science, 21(3): 305-310 (in Chinese with English abstract)
Huang SJ, Zeng YC, Jia GX and Chen YR. 1987. On the genesis of Dabaoshan polymetallic deposit in Guangdong Province, China. Geochimica, (1): 27-35 (in Chinese with English abstract)
Jia DC, Hu RZ and Lu Y. 2003. The element geochemistry and nature of magma source of the volcanic rocks in the Rucheng Basin, southeastern Hunan. Geoscience, 17(2): 131-136 (in Chinese with English abstract)
Jiang SY, Zhao KD, Jiang YH and Dai BZ. 2008. Characteristics and genesis of Mesozoic A-type granite and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract)
Li XH, Hu RZ and Yao B. 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract)
Liu HQ, Yang SY, Zhang XL and Chen CJ. 1985. A preliminary study on the genesis fo the Dabaoshan polymetallic deposit in northern Guangdong. Acta Geologica Sinica, (1): 47-61 (in Chinese with English abstract)
Liu XS and Zhou SZ. 1985. On the occurrence of middle Ordovician volcanics and analysis of ore-forming mechanism of siderite polymetallic ore deposit from Dabaoshan, Qujiang County, Guangdong Province. Journal of Nanjing University (Natural Science Edition), 21(2): 348-360 (in Chinese with English abstract)
Ludwig KR. 2001. User's manual for Isoplot/Ex, version 2.49: A geochronologica toolkit for Microsoft Excel Berkela. Geochronological Cente Special Publication, No. la: 1-58
Ludwig KR. 2003. User's manual for Isoplot/Ex, version 3.0: A geochronologica toolkit for Microsoft Excel Berkela. Geochronological Cente Special Publication, No. la: 1-71
Luo NH. 1985. The geological and geochemical features and the origin of Dabaoshan polymetallic deposit in Guangdong Province. Journal of Guilin Institute of Technology, 5(2): 183-195 (in Chinese with English abstract)
Mao JW, Li HY, Wang DH and Peng C. 1998. Ore-forming of Mesozoic polymetallic deposits in South China and its relationship with mantle plume. Bulletin of Mineralogy, Petrology and Geochemistry, 17(2): 130-132 (in Chinese with English abstract)
Mao JW, Hua RM and Li XB. 1999. A Preliminary study of large-scale metallogenesis and large cluster of mineral deposits. Mineral Deposits, 18(4): 291-299 (in Chinese with English abstract)
Mao JW and Wang XL. 2000. A preliminary study on tmelmits and geodynamic setting of large-scale metallogeny in East China. Mineral Deposits, 19(4): 289-296 (in Chinese with English abstract)
Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004a. Mesozoic large scale mineralization and multiplelithoshpheric extersion in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract)
Mao JW, Li XF, Lehmann B, Chen W, Lan XM and Wei SL. 2004b.40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 23(2): 164-175 (in Chinese with English abstract)
Mao JW, Xie GQ, Li XF, Zhang C and Wang YT. 2006. Mesozoic large-scale mineralization and multiple lithospheric extensions in South China. Acta Geologica Sinica, 80(3): 420-431
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposit in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2): 109-119 (in Chinese with English abstract)
Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological character of the Qinhanbg (or shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract)
Mao JW, Cheng YB, Chen MH and Franco P. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294
Ren JS, Niu BG and He ZJ. 1998. Tectonic framework and dytnamic evolution Eastern China. In: Ren JS and Yang WR (eds.). Lithosphere Structure and Tectonic Magma Evolution in Eastern China. Beijing: Atomic Energy Press, 1-12 (in Chinese)
Shirey SB and Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
Song SM, Hu K, Jiang SY and Li K. 2007. The He-Ar-Pb-S isotope tracing on ore-forming fluid in Dabao Hill polymetallic deposit, North Guangdong. Contributions to Geology and Mineral Resources Research, 22(2): 87-99 (in Chinese with English abstract)
Steiger RH and Jager E. 1977. Subcommission on geochronology: Converntion on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36:359-362
Sun T and Zhou XM. 2002. Late Mesozoic extension in Southeast China: Petrologic symbols. Journal of Nanjing University (Natural Science Edition), 38(6): 737-746 (in Chinese with English abstract)
Tang JF, Liu JQ and Fu TA. 1992. Forecasting of forming conditions and structure controlling ore and rock rule at the Dabaoshan polymetallogenic ore deposit and its other regions. In: Institute of Yichang, Chinese Academy of Geological Sciences (eds.). Nanling Geology and Mineral Resource Corpus (3). Beijing: Geological Publishing House, 1-67 (in Chinese)
Tong QM, Wu RE and Peng JL. 1995. W-Sn-Pb-Zn-Au-Ag Ore Deposit Metallogenic Regularities in Chengzhou Area. Beijing: Geological Publishing House, 1-98 (in Chinese)
Wang L, Hu MA, Yang Z, Chen KX and Xia JL. 2010. Geochronology and its geological implications of LA-ICP-MS zircon U-Pb data of granodiorite porphyries in Dabaoshan polymetallic ore deposit, North Guangdong Province. Earth Science, 35(2): 175-185 (in Chinese with English abstract)
Xu DM, Lin ZY, Long WG, Zhang K, Wang L, Zhou D and Huang H. 2012. Research history and current situation of Qinzhou-Hangzhou metallogenic belt, South China. Geology and Mineral Resources of South China, 28(4): 277-289 (in Chinese with English abstract)
Xu XS, O’Reilly SY, Griffin WL and Zhou X. 2000. Genesis of young lithospheric mantle in southeastern China: An LA-ICPMS trace element study. Journal of Petrology, 41(1): 111-148
Xu YG, Sun M, Yan W, Liu Y, Huang XL and Chen XM. 2002. Xenolith evidence for polybaric melting and stratification of the upper mantle beneath south China. Journal of Asian Earth Sciences, 20(8): 937-954
Yang MG, Huang SB, Lou FS, Tang WX and Mao SB. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area. Geology in China, 36(3): 528-543 (in Chinese with English abstract)
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunnan and its geological implications. Acta Geologica Sinica, 81(2): 278-286
Yuan SD, Peng JT, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualingtin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012a. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)
Yuan SD, Liu XF, Wang XD, Wu SH, Yuan YB, Li XK and Wang TZ. 2012b. Geological characteristics and40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787-3797 (in Chinese with English abstract)
Zhuang MZ. 1986. Conditions and genesis of the Dabaoshan polymetallogenic deposits. Geology and Exploration, (5): 27-31 (in Chinese with English abstract)
Zou HP. 2001. Crust response of terrigenous expansion-lithospheric delamination northern South China Sea. Marine Geology and Quaternary Geology, 21: 39-44 (in Chinese with English abstract)
附中文参考文献
蔡锦辉, 刘家齐. 1993. 粤北大宝山多金属矿床矿物包裹体特征研究及应用. 矿物岩石, 13(1): 33-40
蔡锦辉, 刘家齐. 1994. 粤北大宝山多金属矿区岩浆岩的成岩时代. 广东地质, 8(2): 45-52
陈文, 张彦, 张岳桥, 金贵善, 王清利. 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据. 岩石学报, 22(4): 867-872
陈文, 万渝生, 李华芹, 张宗清, 戴橦谟, 施泽恩, 孙敬博. 2011. 同位素地质年龄测定技术及应用. 地质学报, 85(11): 1917-1947
杜安道, 赵敦敏, 王淑贤, 孙德忠, 刘敦一. 2001. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄. 岩矿测试, 20(4): 247-252
樊太昌, 钟树荣, 刘胜, 李光超. 1994. 粤北大宝山-雪山嶂地区成矿系列及成矿模式. 地质找矿论丛, 9(3): 48-58
葛朝华, 韩发. 1986. 大宝山铁-多金属矿床的海相火山热液沉积成因特征. 矿床地质, 5(1): 1-12
葛朝华, 韩发. 1987. 广东大宝山矿床喷气-沉积成因地质地球化学. 北京: 北京科学技术出版社, 11-12
顾连兴, 胡文, 倪培, 何金祥, 徐跃通, 陆建军, 林春明, 李伟强. 2003. 再论大陆地壳断裂坳陷带中的华南型块状硫化物矿床. 高校地质学报, 9(4): 592-608
郭春丽, 许以明, 楼法生, 郑佳浩. 2013. 钦杭带侏罗纪与铜和锡矿有关的两类花岗岩对比及动力学背景探讨. 岩石矿物学杂志, 32(4): 463-484
何金祥, 徐克勤, 顾连兴. 1996. 对马山-大宝山变质成因磁黄铁矿不同组成结构的认识. 地球科学, 21(3): 305-310
黄书俊, 曾永超, 贾国相, 陈远荣. 1987. 论广东大宝山多金属矿床的成因. 地球化学, (1): 27-35
贾大成, 胡瑞忠, 卢焱. 2003. 湘东南汝城盆地火山岩的元素地球化学及源区性质讨论. 现代地质, 17(2): 131-136
蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509
李献华, 胡瑞忠, 饶冰. 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31
刘姤群, 杨世义, 张秀兰, 陈长江. 1985. 粤北大宝山多金属矿床成因的初步探讨. 地质学报, (1): 47-61
刘孝善, 周顺之. 1985. 广东大宝山中泥盆世火山岩与层状菱铁矿-多金属矿床成矿机制分析. 南京大学学报(自然科学版), 21(2): 348-360
罗年华. 1985. 广东大宝山多金属矿床地质地球化学特征及成因探讨. 桂林冶金地质学院院报, 5(2): 183-195
毛景文, 李红艳, 王登红, 彭聪. 1998. 华南地区中生代多金属矿床形成与地幔柱关系. 矿物岩石地球化学通报, 17(2): 130-132
毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区预测. 矿床地质, 18(4): 291-299
毛景文, 王志良. 2000. 中国东部大规模成矿作用时限及其地球动力学背景的初步探讨. 矿床地质, 19(4): 289-296
毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004a. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55
毛景文, 李晓峰, Lehmann B, 陈文, 蓝晓明, 魏绍六. 2004b. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar测年及其成岩成矿的地球动力学意义. 矿床地质, 23(2): 164-175
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338
毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526
毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109-119
毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658
任纪舜, 牛宝贵, 和政军. 1998. 中国东部的构造格局和动力演化. 见: 任纪舜, 杨巍然编. 中国东部岩石圈结构与构造岩浆演化. 北京: 原子能出版社, 1-12
宋世明, 胡凯, 蒋少涌, 李贶. 2007. 粤北大宝山多金属矿床成矿流体的He-Ar-Pb-S同位素示踪. 地质找矿论丛, 22(2): 87-99
孙涛, 周新民. 2002. 中国东南部中生代伸展应力体制的岩石学标志. 南京大学学报(自然科学版), 38(6): 737-746
汤吉方, 刘家齐, 傅太安. 1992. 粤北大宝山及其外围地区多金属矿床成矿条件、构造控岩控矿规律及隐伏矿床预测. 见: 中国地质科学院宜昌地质矿产研究所编. 南岭地质矿产文集(3). 北京: 地质出版社, 1-67
童潜明, 伍仁和, 彭寄来, 1995. 郴桂地区钨锡铅锌金银矿床成矿规律. 北京: 地质出版社, 1-98
王磊, 胡明安, 杨振, 陈开旭, 夏金龙. 2010. 粤北大宝山矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地球科学, 35(2): 175-185
徐德明, 蔺志永, 龙文国, 张鲲, 王磊, 周岱, 黄皓. 2012. 钦杭成矿带的研究历史和现状. 华南地质与矿产, 28(4): 277-289
杨明桂, 黄水保, 楼法生, 唐维新, 毛素斌. 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543
袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012a. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27-38
袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李学凯, 王铁柱. 2012b. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究. 岩石学报, 28(12): 3787-3797
庄明正. 1986. 大宝山多金属矿床成矿条件及矿床成因探讨. 地质与勘探, (5): 27-31
邹和平. 2001. 南海北部陆缘张裂-岩石圈拆沉的地壳响应. 海洋地质与第四纪地质, 21: 39-44