刘敏 张作衡 向君峰 曹德智 杨光华LIU Min, ZHANG ZuoHeng, XIANG JunFeng, CAO DeZhi and YANG GuangHua
1. 中国地质大学地球科学与资源学院,北京 1000832. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 1000373. 青海省地质调查院,西宁 8100124. 西安地质矿产勘查开发院,西安 7101001. School of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China3. Qinghai Geological Survey Institute, Xining 810012, China4. Xi’an Institute of Geological and Mineral Exploration, Xi’an 710100, China2013-09-02 收稿, 2013-12-09 改回.
祁连山加里东造山带是我国西北地区重要的钨资源地,区内相继发现了塔儿沟和小柳沟大型钨矿床及一些中小型矿床(《中国矿床》编委会,1994;毛景文等,1999;Maoetal., 1999a, b; 张作衡等,2002;杨忠堂等,2002, 2004;林国芳和林凤萍,2003),初步显示了该成矿带找钨矿的巨大潜力。大黑山钨矿位于青海宝库河上游大黑山一带,距大通县城120km。该矿床由青海省地质矿产勘查院于2002年发现(曹德智和薛培林,2008*曹德智,薛培林.2008.青海省大通县大黑山地区钨矿普查报告. 内部资料, 1-93),目前正处于普查阶段,研究程度较低,已有报导仅限于大黑山钨矿地质特征及找矿标志的研究(曹德智和薛培林,2008;王飞等,2012;吴少锋等,2012;丁成旺等,2013),对与成矿有关花岗岩的年代学、岩石学、地球化学尚未进行详细的研究,在一定程度上影响了钨矿成因、形成环境等的深入探讨。本文通过对与成矿有关花岗岩的岩石学、年代学和地球化学的研究,探讨了花岗岩的形成时代、地球化学特征、岩石成因及来源,为祁连山加里东造山带钨矿成矿带的成矿背景研究提供新的依据。
青海大黑山钨矿位于青海省门源回族自治县、大通回族自治县以及海晏县三县管辖地区,其地理坐标为:东经101°02′15″,北纬37°24′130″(吴少锋等,2012)。构造上位于秦祁昆晚加里东造山系祁连造山带北祁连造山亚带与中祁连元古宙古陆块体接合部位的南侧(图1)。该区地质构造十分复杂,经历了多次构造运动,其中以加里东运动最为强烈,是一条多旋回造山带,总的构造线方向为北西西向。区域构造以断裂构造为主,褶皱构造为辅。其主要的断裂构造是贯穿全区的北西西向的逆断层,后期断裂具明显的继承性活动特点,在其南、北侧依次形成较多的次级断裂。次级断裂的附近岩石破碎蚀变及片理化现象较普遍,形成了多条与区域构造线方向一致的破碎蚀变带。此外还产生一组北北西向高角度平移断层。中北祁连之间的深大断裂呈北西-南东向延伸,倾向南西,该断裂北东部为北祁连的上奥陶统,断裂长期活动对南北两侧沉积作用、变质作用及岩浆活动有明显的控制作用。加里东褶皱构造较为发育, 其主要表现在中、 下元古界及上奥陶统扣门子组的斜长黑云片麻岩、黑云石英片岩之中,常见早期褶曲被后期次级褶曲所叠加,次级褶曲又被更次级褶曲所复杂化,同时其表现形态及其组合方式比较复杂,但主体产状仍以北西-南东向为主。区域岩浆活动强烈,规模较大,岩性从超基性-酸性均有出露。侵入岩岩性以酸性为主,中性、基性、超基性岩次之。以岩基式酸性花岗岩为主(宝库河花岗岩体),岩株、岩脉式中、酸性闪长岩、花岗岩次之,存在着多期次、侵入广泛的特点。
图1 北祁连大坂山区域地质图(据王飞等,2012)Fig.1 Geological sketch map of Daban mountains in the northern Qilian (after Wang et al., 2012)
矿区出露地层主要为下元古界托赖岩群片麻岩组、大理岩组和第四系。断裂构造不甚发育,裂隙、节理等紧紧围绕宝库河花岗岩体,具放射状分布的特点。矿区褶皱构造均以揉皱、褶曲形式出现,较为发育,呈北西-南东向紧密-稀疏状展布,与地层走向一致,局部亦有南北向褶曲。
矿区内岩浆岩主要有宝库河花岗岩、大坂山蛇绿岩等。其中宝库河花岗岩体为一复式岩体,是矿区的主要岩体,分布于矿区中南部,出露面积较大。岩性以灰白色粗中粒黑云二长花岗岩、中细粒英云闪长岩为主。
矿区内主要矿带均位于花岗岩外接触带中,元古代片麻岩呈岛屿状残存于花岗岩体内,而含矿的矽卡岩带又赋存在元古代片麻岩地层内,黑云二长花岗岩呈岩枝状沿片麻岩片麻理侵入的小岩体与围岩的外接触带则是矿体集中赋存的部位。矿区共划分出6个矿带,其中以Ⅱ号矿带规模最大,由6条断续平行排列的矿体组合而成,矿体总体呈平行南北向分布(图2),北端被一东西向断层截断并受其控制,其它矿带规模较小。矿体形态较为复杂,呈似层状、囊状、分支脉状、或具复合膨大的复杂透镜体状,走向稳定,多产于透辉石矽卡岩中,矽卡岩围岩为黑云石英片岩。
矿化类型主要是白钨矿化矽卡岩型,局部可见有白钨矿化二长花岗岩型和萤石石英脉型,其中,矽卡岩型是主要的矿石类型,目前约占全区矿石总量的90%以上。矿石主要呈均匀粒状变晶结构,纤状变晶结构、柱状变晶结构、交代结构和交代残余结构,块状、浸染状及斑杂状构造(丁成旺等,2013)。地表矿石中主要金属矿物是白钨矿,局部伴生微量黄铁矿、磁黄铁矿、黄铜矿、褐铁矿;非金属矿物有透辉石、石榴石、绿帘石、萤石、透闪石、斜长石、硅灰石、矽线石、阳起石、石英、磷灰石、方解石、榍石。深部钻孔内矿石中金属矿物除白钨矿、黄铁矿、磁黄铁矿、黄铜矿外还见有闪锌矿等,非金属矿物还出现了橄榄石、石榴石等典型矽卡岩的矿物组合。
围岩蚀变类型主要为矽卡岩化、硅化、云英岩化及黄铁矿化等。成矿过程可划分为4个阶段,即:(1)矽卡岩阶段:主要矿物有透辉石、符山石、石榴石等;(2)退化蚀变阶段:除第1阶段所形成的矽卡岩化的一般矿物外,尚有大量的透闪石、斜长石、白云母及白钨矿、绿帘石、石英等矿物生成,该阶段为本矿床主要成矿阶段。(3)石英硫化物阶段:主要矿物为石英,含少量黄铁矿、磁黄铁矿、黄铜矿、辉钼矿和白钨矿等,多呈脉状、细脉状和浸染状叠加于矽卡岩和退化蚀变岩之上;(4)碳酸盐-萤石阶段:以形成细脉状、浸染状和块状方解石和萤石组合为特征,方解石-萤石细脉叠加于石英-硫化物细脉之上(吴少锋等,2012;丁成旺等,2013)。
宝库河花岗岩是矿区的主要岩体,主要分布于矿区中南部,所占面积较大。岩体侵入于下元古界托赖岩群内,位于宝库河背斜轴部。接触界线中间部分向北凸起呈弯曲状,内接触带岩石颗粒变细,暗色矿物具定向排列,长石被交代呈蚕食状边缘。局部出现片麻状构造,接触面与围岩片理或片麻理基本一致。岩体边缘部见有围岩(黑云母石英片岩、角闪片岩、石英片岩)捕虏体。外接触带宽度不等,一般为300~500m。片岩、片麻岩遭受混合岩化。岩体侵入深度不大,成岩后剥蚀程度中等。目前所发现含白钨矿矽卡岩多产于该套花岗岩和片麻岩之中。
岩体的主要岩性为灰白色中粗粒黑云二长花岗岩、中细粒-中粒英云闪长岩。
灰白色中粗粒黑云二长花岗岩(图3a-d):块状构造,二长结构,主要矿物为斜长石、石英、微斜长石、黑云母等。斜长石25%~40%,属更长石,多呈半自形板柱状,双晶发育,晶粒粗大,具环带状结构,表面常发育泥化、绢云母化及高岭土化而呈现土灰色(图3c),聚片双晶及卡钠复合双晶发育。钾长石20%~45%,属微斜长石、他形粒状、半自形、格子双晶,晶粒粗大有轻微粘土化,充填于斜长石空隙之中。局部具有条纹结构、蠕虫结构。石英20%~35%,呈他形粒状、柱状充填于斜长石之间的孔隙中,也见少量包裹于长石中的呈半自形-自形粒状的石英,多具波状消光,部分石英在结晶后受压破碎,呈集合体状出现,分布在长石晶粒之间略具定向排列,有的交代长石使得长石边缘呈蚕食状。黑云母2%~10%(图3c),褐色、多色性显著,呈自形片状,略具定向排列,部分被白云母、绿泥石交代呈残留状,见有铁质、榍石沿原解理缝充填。副矿物有锆石、磷灰石、金红石、萤石、白钨矿、独居石、磁铁矿、石榴石、黄铁矿、褐铁矿、方铅矿、钍石等呈微粒状零星分布。
图2 大黑山钨矿地质图(据曹德智和薛培林,2008修改)Fig.2 Geological map of Daheishan tungsten ore deposit (modified after Cao and Xue, 2008)
图3 宝库河黑云二长花岗岩的野外(a)及显微(b-d)照片Qtz-石英;Kfs-钾长石;Bt-黑云母;Pl-斜长石Fig.3 Photographs (a) and micrographes (b-d) of biotite monzonitic granite from Baokuhe plutons
中细粒-中粒英云闪长岩:块状构造,花岗结构,主要矿物为斜长石、石英、钾长石,少量黑云母、白云母等。斜长石50%~65%,半自形板柱状,具环带状结构。粒度较小,不规则排列,且分布不均,绢云母化较发育。石英20%~30%,呈他形粒状充填于斜长石之间的孔隙中,略具定向排列,因动力变质作用的参与,使其原始结晶形态发生一定改变,常见有压碎或沿某一方向拉长的现象,具波状消光,粒径为0.06~1.26mm之间,常于局部聚集。钾长石10%~15%,属微斜长石,多呈他形-半自形粒状,格状双晶发育,晶粒较斜长石和石英粗大,充填于斜长石空隙之中,且普遍发育轻微泥化,局部具有碎粒化的特点。黑云母2%~15%,褐色、多色性显著,呈自形片状,部分被白云母交代。副矿物主要有铁铝榴石、榍石等。
分析测试样品均为无蚀变和矿化影响或蚀变甚弱的样品,其中用于定年的样品为黑云母二长花岗岩(BKY-20)。
主量元素、微量元素、稀土元素的测试在国家地质实验测试中心测试完成,主量元素主要采用X荧光光谱仪(2100)测定;微量元素及稀土元素采用等离子质谱(X-series)测定,以AMH-1和GBPG-1为参考标样,相对偏差(RSD)均小于5%。
用于U-Pb测年的锆石是将样品经人工破碎,采用常规的重力和磁选方法分离后,在双目显微镜下人工挑选获得。将代表性的锆石颗粒粘在双面胶上,然后用无色透明的环氧树脂固定,待环氧树脂充分固化后抛光至锆石露出一个平面。然后进行透、反射和阴极发光(CL)照像,结合这些图像选择适宜的测试点位。锆石LA-ICP-MS U-Pb分析在南京大学内生金属矿床成矿机制国家重点实验室完成。采用仪器为Agilent 7500a ICP-MS,实验原理和详细测试方法对照Jacksonetal.(2004)所述。其工作参数为:等离子气体Ar 16L/min,辅助气体Ar 1L/min,剥蚀物质载气He 0.9~1.2L/min。激光剥蚀系统波长213nm,激光脉冲频率5Hz,宽度5ns,剥蚀孔径40μm,剥蚀时间80s,背景测量时间40s,脉冲能量为10~20J/cm2,206Pb、207Pb、208Pb、232Th 和238U的停留时间依次为15、30、10、10 和15ms。应用锆石标样GJ-1进行同位素分馏校正,GJ-1锆石标样的测试值为(601±12)Ma;此外,在分析中加入“未知”标样Mud Tank(分析值735±12Ma),用于监控测试的重现性和仪器的稳定性,本实验室对GJ-1和Mud Tank锆石标样的测试结果与其他实验室的测试结果一致。质谱的分析数据通过即时分析软件GLITTER计算获得相应的同位素比值、年龄以及误差,上述数据采用目前较为广泛接受的方法进行普通铅校正,校正后的最终结果应用Isoplot(路远发,2004)程序完成年龄计算和谐和图的绘制。
用于锆石定年的样品中锆石大小基本一致,颗粒较大,粒径200~400μm,多呈长柱状,自形程度较好,大部分锆石颗粒以灰白色、淡棕色为主。阴极发光(CL)图像显示(图4),大部分锆石具有明显的密集振荡环带,显示岩浆成因锆石的典型特征(吴元保和郑永飞,2004)。锆石的LA-ICP-MS U-Pb同位素分析结果见表1及图5。
对样品BKY20(黑云母二长花岗岩)测试了21个点,其中三个不谐和的206Pb-238U年龄(分别为151Ma、157Ma、431Ma)可能是Pb丢失的结果。其余的18个点均投影于谐和线上或谐和线附近,具有较一致的206Pb-238U年龄,变化于443~451Ma。黑云母二长花岗岩中锆石U的含量为55×10-6~1110×10-6,Th含量为65×10-6~1191×10-6,Th/U为0.48~1.60,平均为1.02,均大于0.4,属岩浆成因锆石。其206Pb-238U加权平均年龄为450.2±2.8Ma,MSWD值为0.102。
可见宝库河黑云二长花岗岩形成于晚奥陶世,即加里东期花岗岩。
表1宝库河黑云母二长花岗岩的LA-ICP-MS锆石U-Pb年龄测试数据
Table 1 LA-ICP-MS zircon dating result of the biotite monzonitic granite from Baokuhe plutons
测点号Th(×10-6)U(×10-6)Th/U207Pb206Pb1σ207Pb235U1σ206Pb238U1σ208Pb232Th1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σ208Pb232Th1σBKY20-12481941.280.054710.001140.546280.011570.072420.000970.021580.0008400254438451643216BKY20-33527400.480.055120.000770.550830.008330.072480.000910.022370.00081417154465451544716BKY20-43364300.780.055530.000950.55460.00990.072440.000940.021910.00081434194486451643816BKY20-52963420.870.062290.003080.613750.029060.071460.0010.021970.000286841084861844564395BKY20-66024261.410.055990.003980.549230.038230.071150.001020.022150.000274521634442544364435BKY20-72612271.150.055670.001130.556670.011520.072530.000970.022620.00084439244498451645217BKY20-82201571.410.055890.001970.557760.019120.072380.001190.023140.000984484745012450746219BKY20-965551.170.055930.002220.559130.021480.072520.001260.023750.001084505545114451847421BKY20-102853120.910.055210.001090.552080.011130.072530.000960.023650.00089421234467451647218BKY20-115065460.930.056810.001080.566580.010870.072330.000920.020580.00102484224567450641220BKY20-1211919561.250.056110.00090.560180.009310.072410.000890.023090.00112457184526451546122BKY20-138928601.040.056630.001020.559430.010210.071650.00090.022150.00108477204517446544321BKY20-141341071.250.05570.002740.555570.026340.072350.001370.025020.001454407244917450849929BKY20-155685451.040.057860.001010.577640.010260.072410.00090.023710.00116524194637451547423BKY20-1662511100.560.057260.000980.571730.009980.072430.00090.022250.0011502194596451544522BKY20-174919480.520.05520.000890.5510.009140.07240.000890.024410.0012420184466451548724BKY20-194816560.730.055020.001160.549110.011560.072390.000940.023370.00118413254448451646723BKY20-21155961.600.058390.003530.582850.033790.072410.001630.021660.0013554487466224511043327
图4 宝库河黑云母二长花岗岩体部分锆石样品阴极发光(CL)图像Fig.4 Cathodoluminescence images of zircon from the biotite monzonitic granite from Baokuhe plutons
图5 宝库河黑云母二长花岗岩的锆石U-Pb年龄谐和图Fig.5 The zircon U-Pb concordia diagram of the biotite monzonitic granite from Baokuhe plutons
5.2.1 主量元素
元素地球化学分析结果见表2。黑云母二长花岗岩的SiO2含量为73.03%~74.18%,平均为73.49%;Al2O3含量为13.48%~13.94%,平均为13.71%;K2O+Na2O含量为7.25%~8.51%,平均为8.00%;K2O/Na2O为1.13~1.94,平均为1.54。铝饱和指数(A/CNK)介于1.04~1.12,平均为1.07。P2O5含量为0.03%~0.08%,平均为0.05%。
黑云母二长花岗岩主要为高钾钙碱性系列(图6)。在A/NK-A/CNK图中(图7)主要落于过铝质花岗岩区域。
5.2.2 稀土元素
宝库河花岗岩稀土元素组成测试结果及相关参数见表2。黑云母二长花岗岩稀土元素总量(∑REE)偏低,为110.5×10-6~214.4×10-6,平均值为178.1×10-6,低于世界花岗岩的平均值(∑REE=254.3×10-6, Vinogradov, 1962)。
表2宝库河黑云母二长花岗岩的主量(wt%)、微量和稀土元素(×10-6)组成
Table 2 Major element (wt%) and trace element (×10-6) data for the biotite monzonitic granite from Baokuhe plutons
样品号BKY-1BKY-3BKY-8BKY-10BKY-11BKY-13BKY-14BKY-21BKY-26SiO273.4373.0373.2373.3573.2973.5274.1873.5073.91Al2O313.7313.8013.5513.9413.7013.8713.4813.6813.60Fe2O30.140.320.110.390.140.450.220.170.30FeO1.451.421.511.491.381.241.241.451.10CaO1.591.381.151.501.041.571.291.331.08MgO0.370.390.430.500.360.460.370.420.37K2O4.074.835.423.945.504.274.745.205.47Na2O3.613.242.803.313.013.433.223.002.94TiO20.150.170.170.210.130.170.140.160.16MnO0.060.060.060.080.070.070.060.070.05P2O50.030.040.050.070.080.060.040.050.04H2O+0.640.720.700.760.420.620.620.640.62CO20.290.120.120.120.210.030.120.120.12LOI0.690.610.610.500.540.310.350.560.38K2O+Na2O7.688.078.227.258.517.707.968.208.41K2O/Na2O1.131.491.941.191.821.241.471.711.86A/NK1.331.311.291.431.251.351.291.291.26A/CNK1.041.051.081.121.071.061.051.051.07σ1.942.172.241.732.391.942.032.202.29Zr13414213216917913796.2125157Hf4.524.624.284.775.994.093.024.075.63Li18.218.924.525.036.536.719.228.820.0Be2.872.441.772.291.781.912.181.971.74Cr14.16.467.007.637.176.636.456.864.78Co1.631.641.902.411.712.271.682.001.63Ni6.043.172.753.463.103.503.833.583.00Cu8.7010.55.266.468.436.335.168.545.87Zn17.521.028.733.228.933.126.826.622.8Ga14.014.113.114.113.014.113.613.613.8Mo0.870.610.440.580.520.630.480.620.38Ta1.041.090.891.011.181.301.401.141.51W1.531.511.222.242.601.071.694.490.77Pb45.245.940.933.145.443.041.944.348.9Th46.356.754.136.937.327.526.441.754.1U6.437.964.172.763.832.413.184.145.76Ba5366671437122710018886791224652Sr110108187196131157129183112V9.4310.612.314.47.0710.39.8312.110.1Sc3.503.902.903.233.204.112.973.583.60Rb165205244192263216219256231Nb12.614.19.2211.012.413.014.213.011.3Cs14.413.96.4012.06.259.727.529.146.41Y37.530.212.110.812.814.810.416.011.4Rb/Sr1.501.901.300.982.011.381.701.402.06Nb/Ta12.1212.9410.3610.8910.5110.0010.1411.407.48La46.957.561.963.041.840.031.453.250.1Ce78.096.498.898.466.964.648.689.584.1Pr7.649.189.569.456.716.214.878.348.29Nd23.828.329.329.021.219.515.226.026.1Sm4.514.954.513.983.663.352.534.354.62Eu0.380.390.570.630.410.410.380.570.43Gd3.884.172.882.622.842.872.053.093.26Tb0.750.700.400.350.430.430.320.460.44Dy5.144.412.242.032.422.541.822.792.29Ho1.321.000.460.400.470.520.380.560.43Er4.083.131.251.161.361.531.141.731.22Tm0.630.490.180.170.190.220.190.260.17Yb4.373.301.261.231.371.541.431.761.36Lu0.650.480.190.190.210.230.210.260.20∑REE182.1214.4213.5212.6150.0144.0110.5192.9183.0L/H7.7411.1323.1025.0915.1413.5713.6616.6818.53δEu0.270.260.450.560.370.390.490.450.32(La/Yb)N7.7012.5035.2436.7421.8818.6315.7521.6826.42(La/Sm)N6.717.508.8610.227.377.718.017.907.00(Gd/Yb)N0.731.051.891.761.711.541.191.451.98
图6 宝库河黑云母二长花岗岩SiO2-K2O图解(据Rickwood, 1989)Fig.6 SiO2 vs. K2O diagram of the biotite monzonitic granite from Baokuhe plutons (after Rickwood, 1989)
图8 宝库河黑云母二长花岗岩微量元素原始地幔配分模式图(a)和稀土元素配分模式图(b)(标准化值据Sun and McDonough, 1989)Fig.8 Primitive mantle-normalized trace element patterns and chondrite-normalized REE patterns diagrams of the biotite monzonitic granite from Baokuhe plutons (normalization values after Sun and McDonough, 1989)
图7 大黑山宝库河花岗岩A/NK-A/CNK图解(据Peccerillo and Taylor,1976)Fig.7 A/NK vs. A/CNK diagram of the biotite monzonitic granite from Baokuhe plutons(after Peccerillo and Taylor, 1976)
其δEu值变化于0.26~0.56,(La/Yb)N值为7.70~36.74,(La/Sm)N值为6.71~10.22,(Gd/Yb)N值为0.73~1.98。
稀土元素球粒陨石标准化图解显示(图8b),黑云二长花岗岩具有较一致的分布模式,其稀土配分模式曲线均为向右缓倾,Eu明显负异常,其轻稀土La-Sm基本呈陡右倾式折线,LREE分异强烈;重稀土Cd-Lu曲线变化则较为复杂,呈一略向上或向下平缓折线,HREE分异不明显。明显不同于典型S型花岗岩常表现出的“海鸥型”稀土配分型式。
5.2.3 微量元素
宝库河花岗岩微量元素组成测试结果及相关参数见表2。
黑云母二长花岗岩的高场强元素含量较高,Th为26.4×10-6~56.7×10-6,U为2.41×10-6~7.96×10-6,Pb为33.1×10-6~48.9×10-6,Zr为96.2×10-6~179×10-6,Hf为3.02×10-6~5.99×10-6,但Nb (9.22×10-6~14.2×10-6)与Ta (0.89×10-6~1.51×10-6)的含量相对较低,Nb/Ta比值较高,为7.48~12.94。大离子亲石元素Ba含量为536×10-6~1437×10-6、Sr为108×10-6~196×10-6。此外岩石还具有较低的Cr (4.78×10-6~14.1×10-6)及Ni (2.75×10-6~6.04×10-6)。在原始地幔标准化蛛网图中(图8a)总体显示了较为一致的分布模式,大离子亲石元素Ba、Sr呈现明显的负异常,高场强元素Th、U、Pb、Zr、Hf呈现明显的正异常, Nb、Ta、Ti呈现负异常。P呈现负异常。
本文获得的黑云母二长花岗岩锆石的206Pb-238U加权平均年龄为:450.2±2.8Ma,即晚奥陶世,加里东期。可以代表该花岗岩的侵位结晶时代。
黑云母二长花岗岩450.2±2.8Ma的结晶年龄与已知的区域花岗岩的年龄及钨大规模成矿时代很相近。毛景文等(1999, 2000a, b, 2003)及Maoetal. (2000)认为北祁连西段发育有三条花岗质岩带,南部边缘的花岗闪长岩岩带、北部边缘的黑云母花岗岩带及南部的碱性岩带。这三条岩带在1:20万区域地质调查时被厘定为加里东期的产物。目前已获得野牛滩岩体锆石U-Pb年龄为459.6±2.5Ma(Maoetal., 2000);小柳沟二长花岗岩锆石LA-ICP-MS U-Pb年龄为454.0±2.0Ma(赵辛敏等,2014);车路沟岩体锆石U-Pb年龄445.6±3.2Ma(贾群子等,2007);桦树沟闪长玢岩锆石U-Pb年龄421±24Ma(张兰英等,2008);金佛寺岩体SHRIMP锆石U-Pb谐和年龄为424Ma(吴才来等,2010);中祁连西段肃北岩体花岗岩SHRIMP锆石U-Pb加权平均年龄为415±3Ma,石包城岩体花岗岩SHRIMP锆石U-Pb加权平均年龄为435±4Ma(李建锋等,2010)。众多年龄均反映出在加里东及海西期祁连地区岩浆活动强烈。Maoetal. (1995, 1998)、毛景文等(2003)、杨钟堂等(2002,2004)、陈生民(2007)、杨国庆和杨春茂(2009)认为祁连地区岩浆活动强烈,加里东期及海西期是区内中酸性岩浆活动的鼎盛时期。吴少锋等(2012)的研究表明本矿床中加里东期二长花岗岩中钨元素丰度值明显高于其它花岗岩,空间上大黑山钨矿也与加里东期二长花岗岩关系最密切,说明本区钨矿的形成与加里东期酸性岩浆形成具有决定关系。
毛景文等(1999)认为本区花岗岩为介于I型与S型花岗岩的一种过渡类型。吴才来等(2004)认为在北祁连东部存在两类I型花岗岩,一类以井子川岩体为代表,岩体形成的构造环境类似岛弧;一类以黄羊河岩体为代表,岩体形成于造山后隆起环境或板内环境。本次研究成果表明,宝库河加里东期黑云母二长花岗岩富硅、富钾、铝过饱和,属于过铝质高钾钙碱性系列花岗岩。A/NK-A/CNK图解(图7)上基本落于I型花岗岩范围内。铝过饱和,A/CNK值主要介于1~1.1,不同与典型S型花岗岩A/CNK>1.1 (Chappell and White, 1974, 1992) 。P2O5的含量低,表2显示其含量具有随SiO2含量的增长呈现负增长的趋势,也显示了I型花岗岩的特征。稀土含量低,Eu明显负异常,LREE分异强烈,HREE分异不明显。微量元素元素蛛网图中Th、U、Pb、Zr、Hf呈现明显的正异常、Ba、Sr、Nb、P、Ti呈现负异常等。这些特征与本区的金佛寺花岗岩、野马咀花岗岩(吴才来等,2010)、小柳沟花岗岩(赵辛敏等,2014)、新疆的铁木尔特花岗岩(柴凤梅等,2010)特征相类似,与南岭燕山早期花岗岩(李献华等,2007)的部分特征类似。结合本次研究成果认为宝库河加里东期黑云母二长花岗岩应该为I型花岗岩。
北祁连是我国最早鉴定出的俯冲带之一,20世纪80年代以来,该区早古生代的蛇绿岩、火山岩、高压变质岩及大地构造演化研究,取得了许多重要进展(王荃和刘雪亚,1976;肖序常等,1978;吴汉泉等,1990;许志琴等,1994;夏林圻等,1995,1996,1999,2000;冯益民,1997;张旗等,1997,2000;宋述光,1997;左国朝和吴汉泉,1997,左国朝等,1999;张建新和许志琴,1995;张建新等,1997,1998;毛景文等,1999;李文渊,2004;李文渊等,2005;吴才来等,2010)。冯益民(1997)认为祁连山造山带的构造演化可以划分为三个阶段,即:(1)晋宁期基底的形成和其后的大陆裂谷构造演化阶段;(2)晚寒武-早中奥陶世洋底扩张及沟弧盆体系大洋盆地演化;(3)早中奥陶世开始的造山作用阶段。在造山作用阶段,祁连山经历了俯冲造山、碰撞造山和陆内造山作用。俯冲造山开始于460Ma或更早,其结果是在北祁连形成了岛弧及岛弧链,并造就了晚奥陶世残留洋盆和中祁连北缘的陆缘裂谷。毛景文等(1999)认为加里东期板块俯冲晚期或碰撞造山早期及造山期后,在仰冲一侧有一系列花岗岩先后侵位,与钨矿有关花岗岩体由前期的花岗闪长岩和晚期黑云母花岗岩组成,从早期到晚期,岩石体积变小,分异程度增高,钨矿成矿作用与晚期岩体有密切关系。
宝库河黑云二长花岗岩微量元素特征显示Th、U、Pb、Zr、Hf呈现明显的正异常、Nb、Ta、Ti呈现负异常等。具有岛弧型岩浆作用的基本特征(Wilson, 1989)。在微量元素环境判别图解上(图9),宝库河二长黑云花岗岩也基本落于火山弧花岗岩的范围内。结合区域地质演化研究表明450Ma北祁连仍处于俯冲造山阶段,由于北祁连洋壳的俯冲,来自地壳的物质熔融形成岩浆。岩浆在上侵或运移过程中进一步分异,下元古界托赖岩群被花岗质岩浆交代,在岩浆热液驱动下,钨元素从地层中被逐渐萃取并迁移,从而达到在有利部位的富集,含矿岩浆热液首先形成矽卡岩,然后退化变质,形成白钨矿,流体演化到石英硫化物阶段又有白钨矿沉淀。而后含钨岩浆与后期含钨热液多次充填、交代作用下形成了现在的矽卡岩型白钨矿床。
图9 宝库河黑云母二长花岗岩的微量元素环境判别图解(据Pearce et al., 1984)(a)-(Y+Nb)-Rb; (b)-Y-Nb; (c)-Yb-Ta; (d)-(Yb+Ta)-RbORG-洋中脊花岗岩;VAG-火山弧花岗岩;WPC-板内花岗岩;Syn-COLG-同碰撞花岗岩Fig.9 Tectonic discrimination diagrams of biotite monzonitic granite from Baokuhe plutons (after Pearce et al., 1984)
(1)宝库河黑云二长花岗岩的锆石LA-ICP-MS U-Pb加权平均年龄为:450.2±2.8Ma;为加里东期岩浆活动的产物。
(2)宝库河黑云二长花岗岩富硅、富碱,铝过饱和,P2O5的含量低,且具有随SiO2含量的增长呈现负增长的趋势,属于过铝质高钾钙碱性系列花岗岩。稀土含量低,Eu明显负异常,LREE分异强烈,HREE分异不明显。微量元素元素蛛网图中Th、U、Pb、Zr、Hf呈现明显的正异常、Ba、Sr、Nb、P、Ti呈现负异常。为I型花岗岩。
(3) 宝库河黑云二长花岗岩是由于北祁连洋壳的俯冲,地壳物质重熔而形成的。
致谢野外工作期间得到了青海地调院与大黑山钨钼矿项目组的大力支持与帮助;数据分析过程中得到了中国地质科学院矿产资源研究所侯可军助理研究员的大力帮助;在论文成文过程中得到了王晓霞研究员、袁顺达副研究员的大量帮助;在此一并致以诚挚的谢意。
Chai FM, Dong LH, Yang FQ, Liu F, Geng XX and Huang CK. 2010. Age, geochemistry and petrogenesis of Tiemierte granites in the Kelang basin at the southern margin of Altay, Xinjiang. Acta Petrologica Sinica, 26(2): 377-386 (in Chinese with English abstract)
Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174
Chappell BW and White AJR. 1992. I and S-type granites in the Lachlan fold bell. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26
Chen SM. 2007. W ore characteristic and ore-exploration prospect analysis of Qilian area. Gold Science and Technology, 15(2): 26-35 (in Chinese with English abstract)
Ding CW, He CF, Zhang HQ, Lu SY, Wang CP and Zhao SN. 2013. Analysis on genesis and prospecting marks of tungsten deposits in Daheishan area, Datong County, Qinghai Province. Gansu Science and Technology, 29(15): 35-37 (in Chinese)
Editorial Board of China Deposits . 1994. China Deposits (the Middle Volume). Beijing: Geological Publishing House (in Chinese)
Feng YM. 1997. Investigatory summary of the Qilian orogenic belt, China: History, presence and prospect. Advance in Earth Sciences, 12(4): 307-314 (in Chinese with English abstract)
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometer to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69
Jia QZ, Yang ZT, Xiao ZY, Quan SC, Zou XH, Xiao SY, Wang SQ, Li BQ, Li BX, Wu YZ, Guo ZP, Duan YM, Su HL, Lei XW and Zhang C. 2007. Metallogenic Regularity and Prediction of Cu-Au-Pb-Zn Deposits in the Qilian Mountains. Beijing: Geological Publishing House (in Chinese)
Li JF, Zhang ZC and Han BF. 2010. Geochronology and geochemistry of Early Paleozoic granitic plutons from Subei and Shibaocheng areas, the western segment of Central Qilian and their geological implications. Acta Petrologica Sinica, 26(8): 2431-2444 (in Chinese with English abstract)
Li WY. 2004. Main mineral deposit associations in the Qilian Mountains and their metallogenic dynamics. Acta Geoscientica Sinica, 25(3): 313-320 (in Chinese with English abstract)
Li WY, Guo ZP and Wang W. 2005. Caledonian convergent transformation and metallogenetic response in the North Qilian Mountains. Geological Review, 51(2): 120-127 (in Chinese with English abstract)
Li XH, Li WX and Li ZX. 2007. Revisiting the genetic classification and tectonic implication of the Early Yanshannian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(9): 981-990 (in Chinese)
Lin GF and Lin FP. 2003. Skarn-quartz vein type tungsten metallogenic setting and prospecting potential in the southern margin of North Qilian Caledonian orogen Northwest China. Acta Geologica Gansu, 12(1): 78-84 (in Chinese with English abstract)
Lu YF. 2004. GeoKit: A geochemical toolkit for Microsoft Excel. Geochimica, 33(5): 459-464 (in Chinese with English abstract)
Mao JW, Li HY and Pei RF. 1995. Geology and geochemistry of the Qianlishan granite stock and its relationship to polymetallic tungsten mineralization. Mineral Deposits, 14(1): 12-25 (in Chinese with English abstract)
Mao JW, Zhang Z and Yang J. 1999a. Geological characteristics and genesis of Ta'ergou tungsten deposit, North Qilian, Gansu Province. In: Stanley CJetal. (eds.). Mineral Deposits: Processes to Processing. Balkema Rotterdam, 381-384
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999b. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818
Mao JW, Zhang ZC, Ren FS, Zuo GC, Zhang ZH, Yang JM, Wang ZL and Ye DJ. 1999. Temporal and spatial distribution and evolution of ore deposits in the west sector of the northern Qilian Mountains. Acta Geologica Sinica, 73(1): 73-82 (in Chinese with English abstract)
Mao JW, Zhang ZH, Bernd L, Zhang ZC, Yang JM and Wang ZL. 2000. The Yeniutan grandiorite in Sunan County, Gansu Province, China: Petrological features geological setting and relationship to tungsten mineralization. Episodes, 23(3): 163-171
Mao JW, Yang JM, Zhang ZH, Zhang ZC, Wang ZL and Tian F. 2000a. The study on petrology, mineralogy and geochemistry of tungsten-bearing granitic rocks in the Yeniutan, Subei Country, Gansu Province. Acta Geologica Sinica, 74(2): 142-155 (in Chinese with English abstract)
Mao JW, Zhang ZH, Jian P, Wang ZL, Yang JM and Zhang ZC. 2000b. U-Pb zircon dating of the Yeniutan granitic intrusion in the western part of the North Qilian Mountains. Geological Review, 46(6): 616-620 (in Chinese with English abstract)
Mao JW, Zhang ZC, Yang JM, Zuo GC, Zhang ZH, Ye DJ, Wang ZL, Ren FS, Zhang YJ, Peng C, Liu YZ and Jiang M. 2003. Metallogenic Series and Prospecting Evaluation of Cu-Au-Fe-W Polymetallic Deposits in Northwest Qilian Orogen. Beijing: Geological Publishing House (in Chinese)
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983
Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263
Song SG. 1997. Tectonic evolution of subductive complex belts in the North Qilian Mountains. Advance in Earth Sciences, 12(4): 353-365 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313-345
Vinogradov AP. 1962. Average content of chemical elements in the chief types of igneous rocks of the crust of the Earth. Geokhimia, (7): 555-571
Wang F, Yang N, Zhao P, Wang Z, Li FM and Lü JM. 2012. Geological-geochemical characteristics and metallogenic prediction of Dabanshan, northern Qilian, Qinghai. Mineral Exploration, 3(1): 63-68 (in Chinese with English abstract)
Wang K and Liu XY. 1976. Paleo-oceanic crust of the Qilianshan region, western China and its tectonic significance. Scientia Geologica Sinica, 11(1): 42-55 (in Chinese with English abstract)
Wu CL, Yang JS, Yang HY, Wooden JL, Shi RD, Chen SY and Zheng QG. 2004. Dating of two types of granite from North Qilian, China. Acta Petrologica Sinica, 20(3): 425-432(in Chinese with English abstract)
Wu CL, Xu XF, Gao QM, Li XM, Lei M, Gao YH, Frost RB and Wooden JL. 2010. Early Palaezoic granitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrologica Sinina, 26(4): 1027-1044 (in Chinese with English abstract)
Wu HQ, Feng YM, Huo YG, Zuo GC. 1990. The discovery of Ordovician lawsonite-glaucophane schist in the middle section of the northern Qilian Mountains, Sunan County, Gansu Province and its significance. Geological Review, 36(3): 277-280 (in Chinese with English abstract)
Wu SF, Chen LB, Li JH, Wang SH and Zhang HQ. 2012. Geological features and the ore-search prospect of the Daheishan tungsten deposit in Datong County, Qinghai Province. Gansu Science and Technology, 28(19): 30-32 (in Chinese)
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569
Xia LQ, Xia ZC and Xu XY. 1995. Dynamics of tectono-volcano-magmatic evolution from North Qilian Mountains China. Northwest Geoscience, 16(1): 1-28 (in Chinese with English abstract)
Xia LQ, Xia ZC and Xu XY. 1996. Petrogenesis of the Marine Volcanic Rocks from North Qilian. Beijing: Geological Publishing House (in Chinese with English abstract)
Xia LQ, Xia ZC, Xu XY, Zhao JT, Yang HQ and Zhao DH. 1999. Proterozoic continental flood basalts from Qilian Mountains. Geological Review, 45(7): 1028-1037 (in Chinese with English abstract)
Xia LQ, Xia ZC, Zhao JT, Xu XY, Yang HQ and Zhao DH. 2000. Determination of properties of Proterozoic continental flood basalts of western part from North Qilian Mountains. Science in China (Series D), 42(5): 506-514
Xiao XC, Chen GM and Zhu ZZ. 1978. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China. Acta Geologica Sinica, 54(4): 287-295 (in Chinese with English abstract)
Xu ZQ, Xu HF, Zhang JX, Li HB, Zhu ZZ, Qu JC, Chen DZ, Chen DL and Yang KC. 1994. The Nanshan Caledonian subductie complex in the northern Qilian Mountains Zhoulang and its dynamics. Acta Geologica Sinica, 68(1): 1-14 (in Chinese with English abstract)
Yang GQ and Yang CM. 2009. Geological characteristics and prospecting direction of 1:50000 mineral prospects investigate of Taergou area. Gansu Metallurgy, 31(5): 52-59 (in Chinese with English abstract)
Yang ZT, Jia QZ, Xiao ZY, Zou XH, Ye DJ, Duan YM, Zhao JW and Su LH. 2002. Metallogenic geological conditions of Taergou-Xiaoliugou W-collecting area and regional prospecting in Qilian metallogenic belt. Mineral Deposits, 21(Suppl.): 515-518 (in Chinese with English abstract)
Yang ZT, Xiao SY, Xiao CY, Li BQ, Guan YM and Su LH. 2004. Minerogenic features of tungsten deposits in the Qilian metallogenic belt and regional ore indications. Geology in China, 31(3): 301-307 (in Chinese with English abstract)
Zhang JX and Xu ZQ. 1995. Caledonian subduction-accretionary complex/volcanic arc zone and its deformation features in the middle section of North Qilian Mountains. Acta Geoscience Sinica, 16(2): 153-163 (in Chinese with English abstract)
Zhang JX, Xu ZQ, Chen W and Xu HF. 1997. A tentative discussion on the ages of the subduction-accretionary complex/volcanic arcs in the middle sector of North Qilian Mountain. Acta Petrologica et Mineralogica, 16(2): 112-119 (in Chinese with English abstract)
Zhang JX, Xu ZQ, Xu HF and Li HB. 1998. Framework of North Qilian Caledonian subduction-accretionary wedge and its deformation dynamics. Scientia Geologica Sinica. 33(3): 290-299 (in Chinese with English abstract)
Zhang LY, Qu XM and Xin HB. 2008. Geochemical characteristics, zircon U-Pb LA-ICP-MS ages of medium-acid dykes in the Huashugou iron-copper deposit, Jingtieshan orefield, and their geological significances. Geological Review, 54(2): 253-262 (in Chinese with English abstract)
Zhang Q, Sun XM, Zhou DJetal. 1997. The characteristics of North Qilian ophiolites, forming settings and their tectonic significance. Advance in Earth Science, 12(4): 366-393 (in Chinese with English abstract)
Zhang Q, Wang Y and Qian Q. 2000. The north Qilian oceanic basin of the Early Paleozoic age: An aulacogen or a large oceanic basin: A discussion with Ge Xiaohong. Chinese Journal of Geology, 35(1): 121-128 (in Chinese with English abstract)
Zhang ZH, Mao JW, Yang JM, Wang ZL and Zhang ZC. 2002. Geology and genesis of Ta′ergou skarn-quartz vein type tungsten deposit in North Qilian Caledonian Orogen, Northwest China. Mineral Deposits, 21(2): 200-211 (in Chinese with English abstract)
Zhao XM, Zhang ZH, Li YS and Guo SF. 2014. Zircon U-Pb geochronology, geochemistry and petrogenesis of the granites from the Xiaoliugou deposit in the western of the North Qilian. Acta Petrologica Sinica, 30(1): 16-34 (in Chinese with English abstract)
Zuo GC and Wu HQ. 1997. A Bi-subduntion-collision orogenic model of Early-Paleozonic in the middle part of North Qilian areas. Advance in Earth Sciences, 12(4): 315-323 (in Chinese with English abstract)
Zuo GC, Wu MB, Mao JW and Zhang ZC. 1999. Structural evolution of Early Paleozonic tectonic belt in the west section of northern Qilian area. Acta Geologica Gansu, 8(1): 6-13 (in Chinese with English abstract)
附中文参考文献
柴凤梅, 董连慧, 杨富全, 刘锋, 耿新霞, 黄承科. 2010. 阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因. 岩石学报, 26(2): 377-386
陈生民. 2007. 祁连山地区钨矿特征及找矿前景分析. 黄金科学技术, 15(2): 26-35
丁成旺, 何存发, 张海青, 卢世银, 汪成萍, 赵胜楠. 2013. 青海省大通县大黑山地区钨矿矿床成因及找矿标志浅析. 甘肃科技, 29(15): 35-37
冯益民. 1997. 祁连造山带研究概况——历史、现状及展望. 地球科学进展, 12(4): 307-314
贾群子, 杨忠堂, 肖朝阳, 全守村, 邹湘华, 肖思云, 王升勤, 李宝强, 李百祥, 伍跃中, 郭周平, 段永民, 苏亮红, 雷学武, 张传. 2007. 祁连山铜金钨铅锌矿床成矿规律和成矿预测. 北京: 地质出版社
李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 26(8): 2431-2444
李文渊. 2004. 祁连山主要矿床组合及其成矿动力学分析. 地球学报, 25(3): 313-320
李文渊, 郭周平, 王伟. 2005. 北祁连山加里东期聚敛作用的构造转换及其成矿响应. 地质论评, 51(2): 120-127
李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-990
林国芳, 林凤萍. 2003. 北祁连加里东造山带南缘钨矿成矿背景及找矿潜力. 甘肃地质学报, 12(1): 78-84
路远发. 2004. GeoKit: 一个用VBA 构建的地球化学工具软件包. 地球化学, 33(5): 459-464
毛景文, 张招祟, 任丰寿, 左国朝, 张作衡, 杨建民, 王志良, 叶得金. 1999. 北祁连山西段金属矿床时空分布和生成演化. 地质学报, 73 (1): 73-82
毛景文, 杨建民, 张作衡, 张招崇, 王志良, 田锋. 2000a. 甘肃肃北野牛滩含钨花岗质岩岩石学、矿物学和地球化学研究. 地质学报, 74(2): 142-155
毛景文, 张作衡, 简平, 王志良, 杨建民, 张招崇. 2000b. 北祁连西段花岗质岩体的锆石U-Pb年龄报道. 地质论评, 46(6): 616-620
毛景文, 张招崇, 杨建民, 左国朝, 张作衡, 叶得金, 王志良, 任丰寿, 张玉君, 彭聪, 刘煜洲, 姜牧. 2003. 北祁连山西段铜金铁钨多金属矿床成矿系列和找矿评价. 北京: 地质出版社
宋述光. 1997. 北祁连山俯冲杂岩带的构造演化. 地球科学进展, 12(4): 353-365
王飞, 燕宁, 赵萍, 王真, 李发明, 吕建民. 2012. 北祁连大坂山地质与地球化学特征及成矿预测. 矿产勘查, 3(1): 63-68
王荃, 刘雪亚. 1976. 我国西部祁连山区的古海洋地壳及其大地构造意义. 地质科学, 11(1): 42-55
吴才来, 杨经绥, 杨宏仪, Wooden JL, 史仁灯, 陈松永, 郑秋光. 2004. 北祁连东部两类I型花岗岩定年及其地质意义. 岩石学报, 20(3): 425-432
吴才来, 徐学义, 高前明, 李向民, 雷敏, 郜源红, Frost RB, Wooden JL. 2010. 北祁连早古生代花岗质岩浆作用及构造演化. 岩石学报: 26(4): 1027-1044
吴汉泉, 冯益民, 霍有光, 左国朝. 1990. 北祁连山中段甘肃肃南奥陶系变质硬柱石蓝闪片岩的发现及其意义. 地质论评, 36(3): 277-280
吴少锋, 陈礼标, 李积红, 王少华, 张海青. 2012. 青海省大通县大黑山钨矿地质特征及找矿前景. 甘肃科技, 28(19): 30-32
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
夏林圻, 夏祖春, 徐学义. 1995. 北祁连山构造-火山岩浆演化动力学. 西北地质科学, 16(1): 1-28
夏林圻, 夏祖春, 徐学义. 1996. 北祁连山海相火山岩岩石成因. 北京: 地质出版社
夏林圻, 夏祖春, 徐学义, 赵江天, 杨合群, 赵东宏. 1999. 祁连山元古宙大陆溢流玄武岩. 地质论评, 45(7): 1028-1037
夏林圻, 夏祖春, 赵江天, 徐学义, 杨合群, 赵东宏. 2000. 北祁连山西段元古宙大陆溢流玄武岩性质的确定. 中国科学(D辑), 30(1): 1-8
肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩带的地质构造意义. 地质学报, 54(4): 287-295
许志琴, 徐慧芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1-14
杨国庆, 杨春茂. 2009. 塔尔沟地区1/5万矿产远景调查地质特征及找矿方向. 甘肃冶金, 31(5): 52-59
杨钟堂, 贾群子, 肖朝阳, 邹湘华, 叶得金, 段永民, 赵俊伟, 苏亮红. 2002. 塔儿沟-小柳沟钨矿集区成矿条件及区域找钨. 矿床地质, 21(增刊): 515-518
杨钟堂, 肖思去, 肖朝阳, 李宝强, 段永民, 苏亮红. 2004. 祁连成矿带钨矿成矿特征及其区域找矿标志. 中国地质, 31(3): 301-307
张建新, 许志琴. 1995. 北祁连中段加里东俯冲-增生杂岩、火山弧带及其变形特征. 地球学报, 16(2): 153-163
张建新, 许志琴, 陈文, 徐慧芬. 1997. 北祁连中段俯冲-增生杂岩、火山弧的时代探讨. 岩石矿物学杂志, 16(2): 112-119
张建新, 许志琴, 徐慧芬, 李海兵. 1998. 北祁连加里东期俯冲-增生楔结构及动力学. 地质科学, 33(3): 290-299
张兰英, 曲晓明, 辛洪波. 2008. 镜铁山桦树沟铁铜矿区中酸性岩脉地球化学特征、锆石U-Pb LA-ICP-MS年龄及其地质意义. 地质论评, 54(2): 253-262
张旗, 孙晓猛, 周德进等. 1997. 北祁连蛇绿岩的特征、形成环境及其构造意义. 地球科学进展, 12(4): 366-393
张旗, 王焰, 钱青. 2000. 北祁连早古生代洋盆是裂陷槽还是大洋盆——与葛肖虹讨论. 地质科学, 35(1): 121-128
张作衡, 毛景文, 杨建民, 王志良, 张招崇. 2002. 北祁连加里东造山带塔儿沟矽卡岩-石英脉型钨矿床地质及成因. 矿床地质, 21(2): 200-211
赵辛敏, 张作衡, 李育森, 郭少丰. 2014. 北祁连西段小柳沟矿区花岗岩岩石锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 30(1): 16-34
中国矿床编委会. 1994. 中国矿床(中卷). 北京: 地质出版社, 75-80
左国朝, 吴汉泉. 1997. 北祁连中段早古生代双向俯冲-碰撞造山模式剖析. 地球科学进展, 12(4): 315-323
左国朝, 吴茂炳, 毛景文, 张招崇. 1999. 北祁连西段早古生代构造演化史. 甘肃地质学报, 8(1): 6-13