孟庆鹏 柴凤梅 李强 郑佳浩 邵发志 耿新霞 韩文清MENG QingPeng, CHAI FengMei*, LI Qiang, ZHENG JiaHao, SHAO FaZhi, GENG XinXia and HAN WenQing
1. 新疆大学新疆中亚造山带大陆动力学与成矿预测实验室,乌鲁木齐 8300462. 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点实验室,北京 1000373. 宝钢集团八钢公司新疆钢铁雅满苏矿业有限责任公司,哈密 8390001. Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of the Central Asian Orogenic Belt, Xinjiang University, Urumqi 830046, China2. Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China3. Bayi Iron and Steel Company of Xinjiang Yamansu Mining Company of Baosteel Group, Hami 839000, China2013-08-10 收稿, 2013-11-22 改回.
新疆北山地区位于塔里木板块东北缘,赋存有丰富的铜镍、铁和金矿床,是我国重要的铜镍金铁矿产勘查区和后备基地之一(程松林等,2008)。位于北山地区的磁海铁(钴)矿床,是20世纪70年代发现的一大型富钴铁矿床,矿床产于辉绿岩中,其赋矿围岩和蚀变特征与国内外为数不多的Cornwall型铁矿床较为相似。Cornwall型铁矿以其储量大、富含Co、Au和Ag等金属备受世人瞩目(Hansetal., 1979; Arthuretal., 1985; Patrick, 2001),但其矿床成因等问题长期以来未有定论。因此,磁海铁(钴)矿床是研究Cornwall型铁矿床的很好典例。前人对磁海铁(钴)矿床的地质特征(盛继福,1985;薛春纪等,2000;左国朝等,2004)、矿物学特征(秦淑英,1983;王玉往等,2006;唐萍芝等,2011,2012)、矿床的形成时代以及与铁矿相关的岩浆岩特征(唐萍芝等,2010;齐天骄等,2012;Houetal., 2013;Huangetal.,2013)开展了研究,但是矿床形成时代不够精确,时间跨度较大,对与铁矿相关的镁铁质岩形成的地球动力学背景有不同的见解,对矿床成因也存有不同的观点。这些问题的关键在于对赋含铁矿的镁铁质岩浆岩的特征不清楚。此外,北山地区被认为是晚古生代发育起来的裂谷(肖渊甫等,2000;姜常义等,2006;徐学义等,2009;齐天骄等,2012),但是对区内出露众多的二叠纪含铜镍镁铁-超镁铁质岩体(姜常义等,2006;李华芹等,2006,2009;孙燕等,2009;苏本勋等,2009,2010;孙赫等,2010)的岩浆来源和构造背景还存在着分歧,部分学者认为形成于活动大陆边缘(范育新等,2007; 颉伟等,2011)或碰撞后伸展环境(李华芹等,2006,2009),部分学者认为形成于裂谷环境(李锦轶等,2000,2006;左国朝等,2004;郑勇等,2009);岩浆来源于受交代的富集型岩石圈地幔(颉伟等,2011)或者亏损的地幔(姜常义等,2006;苏本勋等,2010);还有部分学者认为是地幔柱活动的产物(毛景文等,2006;Maoetal., 2008; Pirajnoetal., 2008; 齐天骄等,2012)。幔源镁铁质岩也是研究地幔特征和壳幔相互作用的窗口。
本文对磁海铁(钴)矿区出露的镁铁质岩石(辉绿岩、辉长岩)开展研究,厘定它们的形成时代,探讨岩浆来源、演化以及形成的大地构造背景,为揭示北山地区晚古生代时期岩浆作用特征提供依据,也为磁海铁(钴)矿床成因研究提供重要信息。
新疆北山地区位于新疆东部,中天山地块与塔里木盆地和敦煌地块之间,其北以中天山南缘断裂为界,南以疏勒河断裂为界,呈北东东向展布(苏本勋等,2010)。该地区地层自太古界至第四系均有出露,以中下元古界和石炭系为主。其中前寒武纪结晶基底包括北山群及长城系古硐井群、杨吉布拉克群和蓟县系爱尔兰基干群;其上部为震旦系马蹄山组和白头山组变质岩(新疆维吾尔自治区地质勘查开发局,1979a*新疆维吾尔自治区地质勘查开发局. 1979a. 五堡幅1:20 万区域地质调查报告);寒武-泥盆纪时期是一套完整的浅海-半深海沉积建造,伴有少量的基性火山岩(姜常义等,2006;苏本勋等,2010);石炭-二叠纪岩浆活动强烈,广泛出露中性-基性火山岩,并分布有大量的花岗质岩体和二十多个镁铁-超镁铁质岩体(新疆维吾尔自治区地质矿产局,1993)。这些镁铁-超镁铁质岩体(如磁海、漩涡岭、笔架山、红石山、坡北、罗东等),主要沿红柳河断裂呈带状分布(图1a)。与东天山的黄山(269±2Ma)(Zhouetal., 2004)、黄山东(274±3Ma)(毛景文等,2002;韩宝福等,2004)、香山(298±7.1Ma)(李月臣等,2006)、葫芦(283±13Ma)(陈世平等,2005),中天山的天宇(290.2±3.4Ma)(唐冬梅等,2009)、白石泉(284±8Ma;281.2±0.9Ma)(吴华等,2005;毛启贵等,2006),阿尔泰造山带南缘的喀拉通克(274±3Ma)(韩宝福等,2004)含铜镍矿镁铁-超镁铁质岩体是同时代的产物。
磁海镁铁-超镁铁质杂岩体位于塔里木盆地东北缘,红柳河断裂和柳园断裂之间(图1a),白地洼-淤泥河大断裂南侧,毗邻红石山含铜镍镁铁-超镁铁质岩体。岩体呈北东东向的纺锤形,东西长约6km,南北宽约3km,向东被第四系覆盖,地表出露面积约12km2。岩体东部侵位于震旦系白头山组长英质片岩、大理岩和白云岩,西部侵位于二叠统红柳河组中基性火山岩。杂岩体主要有辉长岩、辉绿岩、辉长辉绿岩和橄榄辉长岩, 辉长岩与辉绿岩无明显界限, 岩体侵位深度自南西向北东逐渐变浅。此外,杂岩体外围也发育有辉石闪长岩、石英闪长岩、闪长岩和花岗闪长岩等,且中酸性岩体晚于基性岩体侵入,局部呈渐变过渡关系(新疆维吾尔自治区地质勘查开发局,1979a)。
图1 新疆磁海铁矿区地质图(据苏本勋等,2010;新疆维吾尔自治区地质勘查开发局,1979b*新疆维吾尔自治区地质勘查开发局. 1979b. 白山幅1:20 万区域地质调查报告修改)
Fig.1 Geological map of the Cihai iron deposit in Xinjiang (modified after Suetal., 2010)
磁海铁(钴)矿床由磁海、磁南和磁西三个矿段组成,其中磁海矿段为主矿段,位于矿区东北部,磁南矿段和磁西矿段规模相对较小,分别位于磁海矿段的南部和西部(图1b)。磁海铁(钴)矿床主要赋存于辉绿岩中(图1c),辉绿岩在成矿前后均有产出,其中成矿前的辉绿岩分布范围较大,主要呈岩株状产出,总体呈NEE走向,产状近于直立。成矿后的辉绿岩呈脉状产出,穿切早期形成的辉绿岩和铁矿体。辉长岩地表出露较少,在磁海和磁南矿段有少量出露,磁海矿段为角闪辉长岩,磁南矿段为粗晶辉长岩。各类型岩石岩相学特征如下:
角闪辉长岩呈浅灰白色,中细粒结构,块状构造,与辉绿岩呈渐变接触。主要由单斜辉石(约占总量的45%)、斜长石(约占40%)和角闪石(约占10%)组成(图2a)。其中单斜辉石呈自形短柱状,偶见双晶,晶体大小变化不大,长度大约在0.2~0.6mm左右,部分辉石破碎程度强烈,多已发生绿泥石和绿帘石化蚀变。斜长石呈长柱状,长约0.2~0.4mm,聚片双晶发育,多数较破碎,表面多因钠黝帘石化和碳酸盐化蚀变而显较脏。角闪石自形程度较差,大小约0.2~0.5mm之间,多已发生碳酸盐化蚀变。副矿物有磁铁矿、磷灰石和锆石(图2b)。
图2 磁海镁铁质岩体的岩石学特征Fig.2 Photographs of representatives rocks from the Cihai mafic intrusion
图3 磁海镁铁质岩体中辉长岩的LA-ICP-MS锆石U-Pb年龄谐和图Fig.3 LA-ICP-MS U-Pb concordia diagrams of zircons separated from gabbros of the Cihai mafic intrusion
辉绿岩呈灰绿色,具辉绿结构,块状构造。主要由斜长石(50%)、单斜辉石(40%)、黑云母(10%)和磁铁矿等组成。其中斜长石呈自形的长板状,常组成三角形骨架包裹辉石而显典型辉绿结构,晶体大小变化较大,最大者可达1mm左右,大多数长约0.4~0.6mm左右,聚片双晶发育,多已发生钠黝帘石化蚀变;单斜辉石呈短柱状或粒状,大小约0.2~0.6mm左右,自形程度较差,多已蚀变为绿泥石;黑云母呈他形片状,具有一组极完全解理,晶体大小<4mm。副矿物有磁铁矿、磷灰石和锆石等(图2c, d)。
粗晶辉长岩呈灰褐色,辉长结构,块状构造。主要以斜长石(40%~50%)和单斜辉石(40%~45%)为主,也见少量角闪石和黄铁矿。斜长石呈自形长板状,大小约为1.6~3mm,聚片双晶发育,晶体较大者蚀变强烈,较小者相对新鲜;单斜辉石呈自形短柱状,长约1.5~2.5mm,部分发生绿泥石化蚀变。角闪石呈半自形晶,多已蚀变。副矿物有磁铁矿、磁黄铁矿和锆石等(图2e, f)。
测年样品采自磁海矿段的角闪辉长岩(N41°08′09.4″,E93°19′55.9″)和磁南矿段的粗晶辉长岩(N41°6′26.1″,E93°18′44″),具体采样位置见图1c。用于定年的锆石按照常规方法从待测的岩石样品中分离,在双目镜下挑选出晶形好、无包体和裂隙干净透明的锆石,将其粘在环氧树脂靶上,并抛光至露出内部。对待测的锆石进行透反射、阴极发光图像分析,选出表面无裂纹、内部干净、环带发育的晶体及测试部位。分析测试在中国地质科学院矿产资源研究所同位素实验室完成。所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用束斑直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。详细分析原理和流程可参考文献(侯可军等,2009)。每测定5~7个样品点测定一次标准锆石(GJ-1和Plesovice),用于观察仪器的状态以保证测试的精确度。样品的同位素比值和元素含量计算采用ICP-MS-DataCal 4.3 程序处理(Liuetal., 2008),年龄计算及谐和图的绘制采用Isoplot 3.0 (Ludwig, 2001)软件处理。分析结果列于表1。
图4 磁海镁铁质岩的SiO2和Mg#与主要氧化物和相容元素关系图Fig.4 SiO2 and Mg# vs. major elements and compatible elements diagrams of the Cihai mafic intrusion
所有用于定年的锆石晶形较好(图3),均呈半自形-自形柱状及双锥状,晶棱及晶面清楚,晶体大小变化较大,其中角闪辉长岩中锆石长轴变化于70~130μm之间,长短轴比一般为2:1~4:1左右,粗晶辉长岩中锆石长轴变化于30~100μm之间,长短轴比一般为1:1~3:1。大部分晶体具有典型的结晶环带,个别锆石可见核幔结构。
对2件样品分别测定了30个锆石颗粒。角闪辉长岩(样品号: CH12-22)中锆石的Th/U比值介于0.70~3.86之间(表1),24个分析点的206Pb/238U表面年龄在误差范围内一致,介于288.8~299.6Ma之间,其加权平均值为294.8±1.3Ma(MSWD=0.63)。在6个年龄不谐和分析点中,2个较小的年龄值(279Ma和289Ma)可能是由于Pb的丢失造成;3个分析点(296Ma、289.6Ma和297Ma)与其他24个分析点的年龄在误差范围内重合,但它们的207Pb/238U较大,可能主要是207Pb难以测准导致的;1个分析点的较老的年龄(376Ma)可能代表了捕获锆石的年龄。粗晶辉长岩(样品号: CN12-31)中锆石的Th/U比值介于0.60~1.9之间(表1),26个分析点的206Pb/238U表面年龄非常一致,介于271~279.6Ma之间,3个分析点具有较老的年龄值(299Ma、325Ma和454.4Ma),可能代表了捕获锆石的年龄,1个分析点的年龄值较小(266Ma),可能是由于Pb丢失造成的。26个接近年龄的加权平均值为276.1±0.63Ma(MSWD=0.45)。在年龄谐和图上,26个分析点均聚集在一致线上及其附近一个小范围内(图3),表明这些锆石形成后U-Pb体系保持封闭,没有明显的U或Pb同位素的丢失和加入。结合锆石阴极发光图像分析,这些年龄可以代表角闪辉长岩和粗晶辉长岩的侵入年龄。
野外系统采集了磁海镁铁质岩体的辉长岩(角闪辉长岩5件、粗晶辉长岩6件)和辉绿岩(5件)样品(采样位置见图1)。选择新鲜的或蚀变较弱的样品进行了主量、微量元素分析。全岩地球化学元素测试在国家地质实验测试中心完成。主量元素采用熔片XRF方法(国家标准GB/T 14506.28—2010j监控)在X荧光光谱仪2100上测定,其中FeO采用容量滴定法(国家标准GB/T 14506.14—2010监控),稀土和微量先采用Teflon熔样罐进行熔样,然后采用Finnigan MAT公司生产的双聚焦高分辨ICP-MS进行测定(标准DZ/T 0223—2001监控),相对标准偏差优于5%。分析结果列于表2。
图5 磁海镁铁质岩的FeOT/MgO-FeOT图解(据Winchester et al., 1977; Miyashiro, 1974)Fig.5 FeOT/MgO-FeOT diagram of the Cihai mafic intrusion (after Winchester et al., 1977; Miyashiro, 1974)
由表2可以看出,角闪辉长岩、辉绿岩和粗晶辉长岩的元素成分具有不同的特征。角闪辉长岩较粗晶辉长岩的SiO2含量高(分别为52.9%~54.4%和42.2%~47.3%),MgO、CaO和Al2O3含量低(前者分别为4.2%~4.5%,9.8%~12.5%和13.8%~14.2%,后者分别为8.0%~20.9%,8.1%~13.1%和12.9%~18.1%),Na2O和TiO2含量显著高(前者分别为5.3%~5.6%和2.27%~2.35%,后者分别为0.9%~2.0%和0.24%~0.4%)。辉绿岩较角闪辉长岩的SiO2含量低,除MgO含量略高外(5.3%~6.3%),CaO、Na2O、Al2O3和TiO2含量相当(图4)。辉长岩属钙碱性系列,辉绿岩属拉斑玄武岩系列(图5)。
在微量元素成分上,各岩性也显示了不同的特征。角闪辉长岩(112×10-6~186×10-6)和辉绿岩(110×10-6~141×10-6)的稀土元素总量(∑REE)高于粗晶辉长岩(9.7×10-6~12×10-6)。在稀土元素球粒陨石标准化图解上(图6a),角闪辉长岩与辉绿岩显示了一致的轻稀土略富集((La/Yb)N=1.1~2.2和1.3~1.9)的右倾型分布模式,并具有一致的Eu负异常特征(δEu分别为0.64~0.77(除一个点达1.0外)和0.77~0.85);粗晶辉长岩具有较为平缓的轻稀土略富集((La/Yb)N=1.2~1.5)的右倾型分布模式,显示了明显的Eu正异常(δEu=1.2~3.5)。在微量元素原始地幔蛛网图上(图6b),角闪辉长岩与辉绿岩显示了一致的特征,即具有U的正异常,Nb和Pb的明显负异常以及Sr和Ti的弱负异常;粗晶辉长岩具有明显不同的特征,显示Ba、U、Pb、Sr和Ti正异常,Th、Nb、P、Zr和Hf负异常。
锆石原位Lu-Hf同位素分析在天津地质矿产研究所进行,所用仪器为Finnigan Neptune多接收电感耦合等离子体质谱仪(LA-MC-ICP-MS)及与之配套的Newwave UP 213激光剥蚀系统。激光束斑直径为25μm,所用的激光脉冲频率为10Hz,能量密度约为2.5J/cm2,以He为剥蚀物质载气。测定时用锆石国际标样91500作外标。
对角闪辉长岩和粗晶辉长岩进行了锆石Lu-Hf同位素分析(表3)。所有分析点的176Hf/177Hf比值均小于0.002,表明锆石在形成以后有较少的放射成因Hf的累积(杨进辉等,2006),获得的176Hf/177Hf比值能够代表其形成时体系的Hf同位素组成(吴福元等,2007)。
表2磁海镁铁质岩的主量(wt%)和微量(×10-6)元素组成
Table 2 Major (wt%) and trace (×10-6) element data for the Cihai mafic intrusion
样品号CH12-54CH12-55CH12-56CH12-57CH12-58CH12-59CH12-60CH12-61CH12-62CH12-63CN12-25CN12-26CN12-27CN12-28CN12-29CN12-30岩性角闪辉长岩辉绿岩辉长岩SiO253.0954.3652.9453.5653.4449.3149.7749.5449.8150.0346.3945.9246.7447.3344.9742.19TiO22.332.312.292.272.352.552.562.532.562.570.240.300.310.40.250.39Al2O314.1613.7514.0713.8714.1613.8213.9313.5613.7613.6316.4915.5318.0318.0218.0712.85CaO10.299.8110.9312.539.998.077.978.968.439.4811.5313.1112.2313.1111.688.05Fe2O30.110.060.590.320.710.991.550.731.250.940.130.420.160.460.591.17K2O0.500.750.340.300.231.701.611.671.772.100.230.160.220.160.220.12MgO4.354.384.344.214.466.275.975.285.746.2212.4413.0210.239.46820.93MnO0.090.100.100.070.110.240.210.210.220.180.120.120.110.090.090.15Na2O5.335.485.425.265.603.603.883.633.643.331.781.241.881.731.990.90P2O50.370.400.370.370.390.300.300.300.310.300.010.010.010.020.010.03LOI2.632.343.212.812.431.951.981.931.762.201.562.231.582.703.054.00CO21.501.501.921.661.420.250.580.580.421.000.420.250.250.260.170.42H2O+1.981.342.001.882.022.842.342.522.342.322.062.662.043.283.004.74TOTAL96.796.698.599.197.391.992.791.492.094.393.495.093.897.092.195.9FeO5.735.515.033.935.9510.0810.0110.5110.068.18.076.887.534.88.038.68Mg#59616066575451495158757872786681Sc29.527.830.22929.339.33736.837.638.828.93928.433.426.213.8V2962642942682844063713623763691211431461501355.96Cr7839.642.539.239.172.666.961.567.867.36131004452912421361Co16.214.814.813.133.340.337.837.538.330.773.865.764.346.891.25.18Ni4015.117.89.5638.936.432.231.834.529.524426424110333815.6Cu4.066.623.9630.147.330.836.436.334.532.229824729512653021.1Zn25.324.126.425.928.748.151.349.750.866.150.846.65238.550.77.44Ga21.519.321.819.522.923.522.321.92221.112.31114.313.4145Ge1.461.211.381.31.471.631.351.711.481.511.111.161.0110.970.13As0.570.261.30.20.480.960.550.540.720.320.920.170.650.071.130.01Rb17.126.511.810.76.8658.959.849.95971.86.514.615.193.465.851.79Sr364517301370175394374407369420217178246214230132Zr4243844144014152913022592552778.428.878.5513.713.83.02Nb7.487.187.5310.97.655.35.255.185.345.450.190.150.190.360.270.05Mo0.630.071.120.240.120.340.431.050.110.290.050.050.190.050.370.05Ba78.411236.421.52929420831430428932.320.435.529.445.223.2Hf8.457.898.448.228.46.736.216.26.016.070.310.350.330.430.430.09Ta0.550.550.570.570.550.420.410.420.420.420.050.050.050.050.050.05Pb1.680.981.031.12.361.181.311.431.128.013.822.214.185.835.323.26Th2.742.72.984.693.061.371.451.551.261.510.080.060.10.130.090.09U0.870.950.851.840.670.50.470.520.450.510.050.050.050.050.050.05Se0.030.030.010.040.40.160.160.330.110.10.690.370.580.251.20.69Y60.56557.178.364.45153.353.255.4615.036.835.656.425.47.14La10.111.410.624.312.411.811.414.412.516.30.890.81.041.041.091.45Ce29.431.629.25634.530.530.336.132.839.92.142.142.42.732.512.39Pr4.734.94.617.535.354.454.525.144.875.910.340.370.380.410.380.53Nd2425.323.134.826.522.122.224.624.5291.692.031.942.11.912.65Sm7.117.747.1610.17.956.466.66.937.28.150.590.790.660.750.640.86Eu2.071.871.913.662.131.851.952.022.042.570.690.530.890.780.810.39Gd9.4710.38.8612.210.58.428.488.859.2810.50.831.10.911.050.891.15Tb1.61.721.522.121.781.411.481.511.541.730.150.190.170.190.150.2Dy10.511.39.8513.811.49.029.389.489.8510.90.951.251.051.181.051.29Ho2.162.342.012.822.381.941.911.982.032.240.190.260.210.240.210.28Er6.87.156.48.837.336.015.936.116.226.870.570.760.630.740.650.83Tm0.930.980.841.160.960.790.790.80.840.920.080.10.080.090.080.11Yb6.316.415.767.786.485.255.255.255.516.060.510.640.560.620.530.76Lu0.930.950.911.120.970.770.780.780.80.870.080.10.090.10.090.11∑REE116.1124.0112.7186.2130.6110.8111.0124.0120.0141.99.70011.1011.0012.0011.0013.00
注:Mg#= Mg2+/(Mg2++FeT2+)×100
表3磁海镁铁质岩的锆石Hf同位素组成
Table 3 Zircon hafnium isotopic composition of the Cihai mafic intrusion
测点号176Yb177Hf2σ176Lu177Hf2σ176Hf177Hf2σAge(Ma)176Hf177HfεHf(0)εHf(t)tDM1(Ma)tDM2(Ma)fLu/HfCH12-22角闪辉长岩CH12-22.10.2131150.0057070.0086810.0002690.2827920.000051CH12-22.20.1165060.0004640.0024270.0000060.2829450.000024CH12-22.30.1024510.0007550.0021380.0000230.2829100.000023CH12-22.50.1949510.0008530.0037630.0000120.2829700.000079CH12-22.70.1258780.0008340.0024440.0000210.2829860.000021CH12-22.90.1774050.0016280.0043910.0000640.2830030.000023CH12-22.100.1395530.0009540.0034360.0000390.2829120.000024CH12-22.110.1514280.0009380.0033340.0000250.2831030.000021CH12-22.120.1128030.0014490.0025510.0000190.2830180.000019CH12-22.130.0680520.0007010.0015220.0000090.2829150.000019CH12-22.140.0976200.0009470.0026390.0000240.2830400.000019CH12-22.150.1150620.0011120.0026700.0000230.2829040.000018CH12-22.160.1072810.0008500.0027880.0000230.2830220.000022CH12-22.190.0904350.0008040.0023030.0000250.2829990.000019CH12-22.200.1291680.0003480.0028500.0000100.2829800.000021CH12-22.210.1633210.0014980.0037870.0000170.2830130.000021CH12-22.220.0978730.0020620.0023950.0000430.2829020.000023CH12-22.230.2167370.0023350.0047160.0000630.2830400.000029CH12-22.250.2049130.0012560.0044850.0000230.2830310.000031CH12-22.260.1716470.0004760.0033630.0000200.2830730.000023CH12-22.270.1328390.0016060.0034390.0000870.2830180.000023CH12-22.280.1129020.0014050.0021700.0000320.2829770.000024CH12-22.290.2233560.0008260.0041360.0000120.2829730.000028CH12-22.300.1684660.0013900.0041550.0001190.2831380.0000272950.2827440.75.5820962-0.740.2829316.112.1453537-0.930.2828984.910.9500613-0.940.2829497.012.8431496-0.890.2829737.613.6392443-0.930.2829798.213.8387429-0.870.2828935.010.8515624-0.900.28308411.717.5225189-0.900.2830048.714.7345372-0.920.2829075.111.3484593-0.950.2830259.515.4314324-0.920.2828894.710.6516632-0.920.2830078.814.8342366-0.920.2829868.014.1372413-0.930.2829647.313.3406463-0.910.2829938.514.3365398-0.890.2828894.610.6515633-0.930.2830149.515.1333349-0.860.2830079.214.8344366-0.860.28305410.616.5270258-0.900.2829998.714.5355384-0.900.2829657.213.3403462-0.930.2829507.112.8431494-0.880.28311613.018.6174118-0.87CN12-31辉长岩CN12-31.10.0527650.0002460.0014030.0000170.2828210.000022CN12-31.20.0527080.0004180.0015740.0000230.2827990.000028CN12-31.40.0319320.0001070.0007580.0000030.2828650.000019CN12-31.50.0453990.0003700.0013460.0000180.2828270.000023CN12-31.60.0586000.0002030.0013230.0000090.2827630.000018CN12-31.70.0586790.0001440.0015350.0000110.2828170.000022CN12-31.80.0521150.0002190.0015210.0000120.2827930.000025CN12-31.100.0494580.0001730.0014090.0000100.2827940.000022CN12-31.110.0455040.0005430.0011460.0000110.2828310.000021CN12-31.120.0075550.0000440.0002150.0000010.2829010.000018CN12-31.130.0045790.0000120.0001390.0000020.2828530.000015CN12-31.140.0742760.0003160.0021520.0000300.2828410.000022CN12-31.150.0673020.0001300.0016840.0000030.2827860.000019CN12-31.160.0613930.0002840.0013280.0000050.2827860.000027CN12-31.170.0574480.0005300.0016080.0000060.2828290.000021CN12-31.180.0510630.0005070.0013340.0000090.2827920.000019CN12-31.190.0496940.0002470.0014780.0000110.2827290.000019CN12-31.200.0526640.0006790.0013060.0000110.2828190.000022CN12-31.210.0561430.0005630.0015140.0000090.2827740.000022CN12-31.230.0530300.0004450.0014570.0000090.2828020.000018CN12-31.240.0583710.0003110.0015390.0000050.2827880.000021CN12-31.250.0388390.0004920.0012450.0000120.2827490.000029CN12-31.260.0522650.0006180.0015060.0000090.2827740.000021CN12-31.270.0552680.0001250.0013240.0000030.2828180.000022CN12-31.280.0526100.0002250.0015560.0000150.2827650.000019CN12-31.290.0703410.0036070.0018360.0000680.2829100.000021CN12-31.300.0545520.0005780.0016990.0000110.2829150.0000232760.2828141.71.5617815-0.960.2827911.06.7651867-0.950.2828613.39.2545708-0.980.2828201.97.8608802-0.960.282757-0.35.5698945-0.960.2828091.67.4625826-0.950.2827850.76.5660882-0.950.2827870.86.6656876-0.960.2828252.17.9600791-0.970.2829004.610.6487621-0.990.2828522.88.9553730-1.000.2828302.58.1600779-0.940.2827770.56.3672898-0.950.2827790.56.3667895-0.960.2828212.07.8609799-0.950.2827850.76.5658881-0.960.282721-1.54.37501025-0.960.2828131.77.5618819-0.960.2827660.15.8687925-0.950.2827941.16.9646860-0.960.2827800.66.4667892-0.950.282743-0.85.0717976-0.960.2827660.15.9686923-0.950.2828121.67.5620821-0.960.282757-0.25.5700944-0.950.2829004.910.6496620-0.940.2829065.110.8487607-0.95
图6 磁海镁铁质岩稀土元素配分模式图(a)和微量元素原始地幔配分模式图(b)(标准化值据Sun and McDonough, 1989)Fig.6 Plots of chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for the Cihai mafic intrusion (normalized values after Sun and McDonough, 1989)
角闪辉长岩的锆石176Lu/177Hf比值主要介于0.001522~0.004485,仅一个点的176Hf/177Hf较其它的数据点低,可能是锆石出现了放射成因的Hf丢失或者后期热液事件的扰动(Blichertetal., 2004; Daietal., 2008)。锆石具有一致的176Hf/177Hf初始比值,24个点的(176Hf/177Hf)i比值变化于0.282744~0.283116,εHf(295Ma)相对集中且较高,介于0.7~13.0,平均值为7.6。fLu/Hf变化于-0.93~-0.87;其二阶段Hf模式年龄(tDM2)范围为118~633Ma。粗晶辉长岩中锆石的27个点的(176Hf/177Hf)i比值变化于0.282721~0.282906,εHf(276Ma)值介于-1.5~5.1,其二阶段Hf模式年龄(tDM2)范围为607~1025Ma(表3),远高于岩体的结晶年龄。
前人利用各种测年方法对磁海镁铁-超镁铁质岩体及磁海铁(钴)矿床的形成时代开展了研究,如张明书等(1980年)获得了角闪石的K-Ar年龄为196.6Ma、215Ma和260Ma,认为磁海铁(钴)矿床形成于二叠纪;盛继福(1985年)获得了黑云母辉绿岩和角闪石蚀变岩的K-Ar年龄分别为247.3Ma和259.3Ma;薛春纪等(2000)获得了辉绿岩Rb-Sr等时线年龄为268Ma,认为矿床形成于早二叠世晚期;齐天骄等(2012)获得了辉绿岩的SHRIMP锆石U-Pb年龄为263.8Ma。Houetal. (2013)获得了磁海辉绿岩的LA-MC-ICP MS锆石U-Pb年龄为128.5±0.3Ma;Huangetal. (2013)测得黄铁矿平均Re-Os模式年龄为262.3±5.6Ma (n=13,包括磁西矿段),其中磁海矿段Re-Os等时线年龄为262±34Ma(n=4,MSWD=0.06)。然而这些年龄变化范围较大,从128Ma到268Ma,相差140Ma,并且该杂岩体属多期次岩浆活动的产物,因此它们不能反映该杂岩体精确的形成时代。
本研究利用LA-ICP-MS锆石U-Pb定年法,获得的磁海镁铁质杂岩体中角闪辉长岩和粗晶辉长岩年龄分别为295Ma和276Ma。我们课题组还获得了成矿前辉绿岩年龄为286Ma,成矿后辉绿岩脉的年龄为276Ma(郑佳浩等,未刊资料),这表明磁海铁(钴)矿区的基性岩浆活动至少持续了19Ma,同时限定了磁海铁矿床岩浆成矿阶段的成矿时代上限为早二叠世。也表明了磁海镁铁质杂岩体与北山地区分布的大量二叠纪(时代集中于289~261Ma)镁铁-超镁铁质岩体属同时代岩浆活动的产物,如漩涡岭(261Ma)、笔架山(279Ma)、红石山(286Ma)、坡北(274Ma))(赵泽辉等,2004;姜常义等,2006;李华芹等,2006,2009;苏本勋等,2009,2010;周鼎武等,2006)。因此该年龄对研究北山地区乃至塔里木东北部的构造演化和岩浆作用具有重要意义,也为磁海铁矿床的成因研究提供重要参考依据。
图7 磁海镁铁质岩的单阶段模式年龄计算示意图(a)及值与年龄相关图(b)(据唐冬梅等,2009 修改)Fig.7 Single-stage Hf model age calculation (a) and correlated diagram of zircon εHf vs. U-Pb age (b) of the Cihai mafic intrusion (modified after Tang et al., 2009)
角闪辉长岩和辉绿岩具有低的SiO2(49.3%~54.4%),高MgO(4.21%~6.27%)和FeOT(3.9%~10.5%),Cr、Co和Ni含量较低,表明它们不可能是原始地幔和亏损的软流圈地幔直接熔融形成,应该为演化岩浆的产物。岩石具有高的εHf(t)值,在(176Hf/177Hf)i和εHf(t)与U-Pb年龄图中(图7),所有样品落入球粒陨石和亏损地幔之间接近球粒陨石演化线的上侧,表明锆石由较球粒陨石稍分异的亏损地幔形成的岩浆结晶。所有岩石富集大离子亲石元素及轻稀土元素,暗示可能是亏损地幔的岩浆受到了地壳物质或者是富集的岩石圈地幔物质的混染。所有岩石具有年轻的tDM和高的εHf(t)值,说明不可能遭受过古老的大陆岩石圈地幔的混染,暗示了岩浆中有大量的幔源物质。所有岩石亏损高场强元素Nb、Ta、Ti,但Nb含量(5.2×10-6~10.9×10-6)较高,明显高于原始地幔、N-MORB和E-MORB的相应值(分别为0.7×10-6,2.3×10-6和8.3×10-6),低于OIB的相应值(48×10-6)(Sun and McDonough, 1989),具有高于E-MORB和OIB的Zr/Nb比值(介于36.8~57.5),Nb/Ta (12.7~19.1)、Zr/Hf (41~49.4)的值也不同于原始地幔(17.8与37)(McDonough and Sun, 1995)和地壳的相应值(11和33)(Taylor and Mclennan, 1985),尤其是TiO2含量较高(>2%)。这些特征表明有俯冲板片熔体的加入。低的Nb/U比值(5.9~11.9)、Ce/Pb比值(5.0~50.9),高的Th和Pb含量表明可能有大洋板片携带的沉积物的加入。
粗晶辉长岩的元素组成也表明其为演化岩浆的产物,为亏损地幔与大洋俯冲物质混合来源。它的εHf(t)值较角闪辉长岩和辉绿岩的低,变化范围大(-1.5~5.1),它们的Nb/Ta、Zr/Hf、Zr/Nb、Nb/U和Ce/Pb比值也有区别,说明亏损地幔和俯冲板片所占比例不同,粗晶辉长岩中俯冲板片所占比例高。因此,辉长岩与辉绿岩石可能是亏损地幔与大洋俯冲物质(洋壳熔体、沉积物熔体以及流体)共同作用的结果。
图8 磁海镁铁质岩La/Yb-Dy/Yb图解(据徐学义等,2009修改;模式计算方法见Bogaard and Wǒrner, 2003)Fig.8 La/Yb vs. Dy/Yb diagram of the Cihai mafic intrusion (modified after Xu et al., 2009; the method of model calculation from Bogaard and Wǒrner, 2003)
所有岩石的MgO与FeO含量高,REE含量低,轻重稀土元素分异不明显等特点,表明源区的部分熔融程度介于10%~20%。有研究表明,亏损地幔源区的部分熔融程度超过20%形成的岩浆亏损轻稀土和强不相容元素(Haskin,1984),部分熔融程度低于10%形成的岩浆强烈富集轻稀土和强不相容元素(Cullers and Graf, 1983)。在Dy/Yb-La/Yb图解上(图8),所有样品位于石榴石橄榄岩的熔融轨迹上方,表明部分熔融发生在石榴子石稳定区内。它们的Mg#值(49~65),相容元素Cr、Ni含量远低于原生玄武岩浆范围,说明它们的母岩浆在岩浆房或在上升过程中经历了结晶分异作用。角闪辉长岩的SiO2与MgO、CaO、Al2O3和FeOT具有良好的负相关性,与TiO2、P2O5具明显的正相关,Mg#与Sc、Co、Ni具明显的负相关,与Cr呈正相关,并且CaO与Al2O3呈负相关,暗示它们经过了橄榄石、单斜辉石和斜长石的分离结晶。辉绿岩位于角闪辉长岩的分离结晶趋势线上,并且它们具有相似的稀土元素配分模式和微量元素配分模式,表明它们是同源岩浆演化的产物。角闪辉长岩在演化过程中逐渐富铁形成辉绿岩,而使辉绿岩显拉斑系列岩石特征。粗晶辉长岩的SiO2与CaO、Al2O3和TiO2呈正相关,与MgO、FeOT呈负相关,Mg#与Co、Ni呈负相关,与Sc、Cr呈正相关,表明母岩浆发生了单斜辉石的分离结晶,其高的Mg#值和正的Eu异常暗示有橄榄石和斜长石的堆积,可能是携带橄榄石和斜长石的晶粥就地结晶的结果。
综上所述,磁海镁铁质岩的母岩浆来源于亏损的软流圈地幔与俯冲板片物质,在岩浆上升过程中均经过了结晶分异作用。不同的岩石类型应该是部分熔融程度不同和板片物质混入程度不同导致的原始岩浆的成分差异,加之上升过程中的演化过程不同导致的。角闪辉长岩和辉绿岩是同源岩浆演化的产物,与粗晶辉长岩具有不同的岩浆来源和演化过程。
图9 磁海镁铁质岩Nb-Zr-Y (a)和Hf-Th-Ta (b)图解(据Meschede, 1986)N-MORB-正常洋脊玄武岩;E-MORB-富集型洋脊玄武岩;WPAB-板内碱性玄武岩;WPT-板内拉斑玄武岩;VAB-火山弧玄武岩;IAT-初始岛弧拉斑玄武岩;CAB-钙碱性岛弧火山岩Fig.9 The Nb-Zr-Y (a) and Hf-Th-Ta (b) diagrams for discriminating the tectonic setting of the Beitashan Fm. Cihai mafic intrusion (after Meschede, 1986)
前已述及,磁海镁铁质岩石与北山地区出露的大量具铜镍矿化的镁铁-超镁铁质岩石为同时代岩浆活动的产物,与这些岩体应该具有相同的构造背景。前已述及,北山地区二叠纪时期岩石形成的地球动力学背景长期存有争议。而且对北山地区出露的二叠纪基性岩形成的构造背景也有不同的认识,如李华芹等(2006,2009)认为该区含铜镍的坡一和坡十岩体是后碰撞构造背景下幔源岩浆上侵的产物;颉伟等(2011)认为坡一和坡十岩体形成于活动大陆边缘或者碰撞造山后伸展阶段,与地幔柱无关;校培喜等(2006)认为北山地区的基性岩(墙)脉与新疆库鲁克塔格地区的基性岩墙群十分相似,可能是地幔柱上涌岩浆作用的产物;Pirajnoetal.(2008)对整个新疆北部二叠纪岩浆活动的时空分布规律分析后认为,整个新疆北部是地幔柱岩浆活动的产物;唐萍芝等(2010)认为磁海铁(钴)矿区的基性岩是后碰撞环境的产物;齐天骄等(2012)认为磁海矿区基性岩与塔里木和东天山二叠纪基性岩均是塔里木地幔柱的一支。
磁海镁铁质岩石形成于二叠纪时期,既有钙碱质也有拉斑质系列岩石,暗示了其为板块边缘环境,而非板内环境。它们富集轻稀土的稀土配分模式明显不同于轻稀土亏损的N-MORB和轻稀土强烈富集的OIB稀土配分模式,排除了它们形成于洋脊玄武岩(E型和N型洋脊玄武岩)的可能。角闪辉长岩和辉绿岩的原始地幔标准化图解具有高场强元素(Nb、Ta、Ti)相对亏损和大离子亲石元素(Th、U、Sr、Rb、Pb)富集,与活动大陆边缘及岛弧区的拉斑玄武岩特征相近,但是岩石的Nb(5.2×10-6~10.9×10-6)和TiO2(>2%)含量明显高于岛弧玄武岩的相应元素含量(Elthon and Casey, 1985)。粗晶辉长岩在原始地幔微量元素蛛网图上显示的Ta、Ti、Pb和Sr的正异常等特征,与岛弧玄武岩和亏损型洋中脊玄武岩特征明显不同(Elthon and Casey, 1985)。在Nb-Zr-Y图解上(图9a),角闪辉长岩和辉绿岩位于板内拉斑玄武岩与火山弧玄武岩区,粗晶辉长岩位于正常洋脊玄武岩与火山弧玄武岩区;在Hf-Th-Ta图解上(图9b),大部分样品位于初始岛弧拉斑玄武岩区和N-MORB区,暗示其并非形成于岛弧或者大陆边缘弧环境。尽管磁海镁铁质岩体的物质来源与地幔柱来源的岩浆均含有软流圈和岩石圈物质,但是前人研究成果表明,地幔柱活动一般具有巨量的玄武岩流、放射状岩墙群、裂谷系和直径约1000~2000km的大范围(1~2km)的地形隆起等一种或多种地质现象(陆建军等,2006),因此探讨北山地区是否为地幔柱岩浆活动的产物,仍需开展更深入的研究。
综上所述,我们认为磁海镁铁质岩体可能形成于后碰撞时期软流圈上隆的岩石圈伸展构造背景,是二叠纪时期岩石圈伸展拉张背景下,亏损的软流圈地幔与古老俯冲物质相互作用的产物。
(1)磁海镁铁质岩形成于295~276Ma之间;
(2)辉长岩属钙碱性系列,辉绿岩属拉斑系列;角闪辉长岩与辉绿岩属同源岩浆演化的产物,与粗晶辉长岩特征一致,均显示富集大离子亲石元素和轻稀土元素,相对亏损高场强元素(Nb、Ta、Ti)特征;
(3)辉长岩和辉绿岩均是在岩石圈伸展拉张背景下,由亏损的软流圈地幔物质与古老的俯冲物质熔体混合物,经分离结晶作用形成。不同的岩石类型是部分熔融程度不同和俯冲物质混入程度不同导致的原始岩浆的成分差异,加之上升过程中的演化过程不同导致的。
致谢野外工作得到了宝钢集团八钢公司新疆钢铁雅满苏矿业有限责任公司磁海矿山相关工作人员的大力支持;室内测试分析受到了国家地质测试中心实验室、天津地质矿产研究所实验室的相关工作人员的帮助;在此一并表示感谢。
Arthur W, Rose DC, Herrick and Peter D. 1985. An oxygen and sulfur isotope study of skarn-type magnetite deposits of the Cornwall type, southeastern Pennsylvania. Economic Geology, 80(2): 418-443
Blichert T, Arndt NT and Gruau G. 2004. Hf isotopic measurements on Barberton komatiites: Effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chemical Geology, 207(3-4): 261-275
Bogaard PJF and Wǒrner G. 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, central Germany. Journal of Petrology, 44(3): 569-602
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House (in Chinese)
Chen SP, Wang DH, Qu WJ, Chen ZH and Gao XL. 2005. Geological features and ore formation of the Hulu Cu-Ni sulfide deposit, eastern Tianshan, Xinjiang. Xinjiang Geology, 23(3): 230-233 (in Chinese with English abstract)
Cheng SL, Wang XK, Wu H, Mao QG, Ao SJ and Han CM. 2008. Late Paleozoic endogenic metallogenic series in the North Mountains, Xinjiang, NW China. Xinjiang Geology, 26(1):43-48 (in Chinese with English abstract)
Cullers RL and Graf J. 1983. Rare earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks, ore petrogenesis. In: Henderson P (ed.). Rare-Earth Geochemistry. Amsterdam: Elsevier, 275-312
Dai BZ, Jiang SY, Jiang YH, Zhao KD and Liu DY. 2008. Geochronology, geochemistry and Hf-Sr-Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: Petrogenesis and implications for lower crust evolution. Lithos, 102(1-2): 65-87
Elthon D and Casey JF. 1985. The very depleted nature of certain primary mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 49(1): 289-298
Fan YX, Ma JL and Bai YL. 2007. Trace element geochemistry and plutonic process of peridotite and pyroxenite in the Beishan, Tarium area. Journal of Lanzhou University (Natural Sciences), 43(1):1-5 (in Chinese with English abstract)
Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP U-Pb zircon age of the mafic-ultramafic rocks and geological significance in Karatungk and Huangshan, Xinjiang. Chinese Science Bulletin, 49: 2324-2328 (in Chinese)
Hans P, Eugster and Chou IM. 1979. A model for the deposition of Cornwall-type magnetite deposits. Economic Geology, 74(4): 763-774
Haskin LA. 1984. Petrogenetic modelling-use of rare earth elements. Developments in Geochemistry, 2: 115-152
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting LA-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hou T, Zhang ZC, Santosh M, Encarnacion J and Wang M. 2013. The Cihai diabase in the Beishan region, NW China: Isotope geochronology, geochemistry and implications for Cornwall-style iron mineralization. Journal of Asian Earth Sciences, 70-71: 231-249
Huang XW, Zhou MF, Qi L, Gao JF and Wang YW. 2013. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Miner. Deposita, 48(8): 925-946
Jiang CY, Cheng SL, Ye SF, Xia MZ, Jiang HB and Dai YC. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115-126 (in Chinese with English abstract)
Jiao PX, Huang YH, Wang YX, Wang XA and Li YJ. 2006. Geological characteristic and tectonic environment of basic dike swarms in the Beishan area, southern Hami, Xinjiang, China. Geological Bulletin of China, 25(1-2): 189-193 (in Chinese with English abstract)
Li HQ, Chen FW, Mei YP, Wu H, Cheng SL, Yang JQ and Dai YC. 2006. Isotopic ages of No. I intrusive body in Pobei mafic-ultramafic belt of Xinjiang and their geological significance. Mineral Deposits, 25(4): 463-469 (in Chinese with English abstract)
Li HQ, Mei YP, Qu WJ, Cai H and Du GM. 2009. SHRIMP zircon U-Pb and Re-Os dating of No.10 intrusive body and associated ores in Pobei mafic-ultramafic belt of Xinjiang and its significance. Mineral Deposits, 28(5): 633-642 (in Chinese with English abstract)
Li JY, Xiao XC, Chen W, Zhang SH and Li WD. 2000. Late Carbonifereous to Late Triassic thermal evolution of the crust of northern Xinjiang, NW China:40Ar-39Ar dating to huangcaopo group in the Kaokesai’ergai mountain of East Junggar. Acta Geologica Sinica, 74(4): 303-312 (in Chinese with English abstract)
Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)
Li YC, Zhao GC, Qu WJ, Pan CZ, Mao QG and Du AD. 2006. Re-Os isotopic dating of the Xiangshan deposit, East Tianshan, NW China. Acta Petrologica Sinica, 22(1): 245-251 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
Lu JJ, Wu LQ, Ling HF, Shen WZ, Gao JJ, Huang GL, Deng P and Tan ZZ. 2006. The origin of the Huangpi-Zhangguangying diabase dykes in the Xiazhuang uranium ore district of northern Guangdong Province: Evidence from trace elements and Nd-Sr-Pb-O isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract)
Ludwig KR. 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication, 1-56
Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)
Mao JW, Pirajno F, Zhang ZH, Chai FM, Yang JM, Wu H, Chen SP, Cheng SL and Zhang CQ. 2006. Late Variscan post-collisional Cu-Ni sulfide deposits in East Tianshan and Altay in China: Principal characteristics and possible relationship with mantle plume. Acta Geologica Sinica, 80(7): 925-942 (in Chinese with English abstract)
Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32:184-203
Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Yan Z, Li JL, Yong Y and Zhang JE. 2006. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultrafic comples in the eastern Tianshan, Xinjiang Province: Constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22: 153-162 (in Chinese with English abstract)
McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4): 223-253
Meschede MA. 1986. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355
Patrick FB. 2001. The geology and mineralogy of the Triassic magnetite deposits at Cornwall, Eastern Pennsylvania. The Ohio State University, Senior Thesis
Pirajno F, Mao JW, Zhang ZC, Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183
Qi TJ, Xue CJ, Zhang ZC, Wang YH and Shao FZ. 2012. Basic igneous rock in Cihai giant iron district, Hami, Xinjiang, and its indication to the metallogenic setting. Earth Science, 37(6): 1315-1326 (in Chinese with English abstract)
Qin SY. 1983. One the study of clinopyroxenes from Cihai iron ore deposits and a triangular diagram for a system with three new end-members of monoclinic pyroxenes. Acta Petrologica Mineralogica et Analytica, 2(4): 272-281 (in Chinese with English abstract)
Sheng JF. 1985. Mineralization and alteration of the Cihai iron deposit. Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences, (3): 89-109 (in Chinese with English abstract)
Su BX, Qin KZ, Sun Hetal. 2009. Petrological and mineralogical characteristics of Hongshishan mafic-ultramafic complex in Beishan area, Xinjiang: Implications for assimilation and fractional crystallization. Acta Petrologica Sinica, 25(4): 873-887 (in Chinese with English abstract)
Su BX, Qin KZ, Sun H and Wang H. 2010. Geochronological, petrological, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 26(11): 3283-3294 (in Chinese with English abstract)
Sun H, Qin KZ, Tang DM, Xiao QH, Su BH and Lu HF. 2010. Olivine characteristics’ implication for magmatic evolution and sulfide segregation of Luodong complex in Beishan area, Xinjiang. Science and Technology Review, 28(18): 21-26 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42(1): 313-345
Sun Y, Xiao YF, Wang DY, Deng JH and Wu DC. 2009. The characteristics and the metallogenic future of the Pobei mafic-ultramafic complex in the Beishan area, Xinjiang, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(4): 402-407 (in Chinese with English abstract)
Tang DM, Qin KZ, Sun H, Su BX, Xiao QH, Cheng SL and Li J. 2009. Lithological, chronological and geochemical characteristics of Tianyu Cu-Ni deposit: Constraints on source and genesis of mafic-ultramafic intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 25(4): 817-831 (in Chinese with English abstract)
Tang PZ, Wang JB, Wang YW and Long LL. 2010. Geochemical characteristics of mafic-ultramafic rocks in the Cihai ore district, Xinjiang, and their geological significance. Geochimica, 39(6): 542-552 (in Chinese with English abstract)
Tang PZ, Wang YW, Wang JB, Long LL, Zhang HQ and Liao Z. 2011. Finding and significance of ilvaite in the Cihai iron deposit, Xinjiang Autonomous Region, China. Acta Mineralogica Sinica, 31(1): 9-16 (in Chinese with English abstract)
Tang PZ, Wang YW, Wang JB, Long LL and Liao Z. 2012. Geochemical characteristics of cobalt from the Cihai ore district, Xinjiang, and their significance. Acta Mineralogica Sinica, 32(3): 379-385 (in Chinese with English abstract)
Taylor SR and Mclenann SM. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press, 1-312
Wang YW, Sha JM and Cheng C. 2006. Composition of magnetite from Cihai Fe(Co) deposit, Xinjiang and its genetic significance. Mineral Deposits, 25(Suppl.): 321-324 (in Chinese with English abstract)
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu H, Li HQ, Mo XH, Chen FW, Lu YF, Mei YP and Deng G. 2005. Age of the Baishiquan mafic-ultramafic complex, Hami, Xinjiang and its geological significance. Acta Geologica Sinica, 79(4): 498-502 (in Chinese with English abstract)
Xiao YF, Wang DY, Wu DC, Deng JH and He ZW. 2000. Geological Evolution of the Western Beishan Tectonic Belt of Xinjiang. Chengdu, Urumqi: Sichuan Science Press, Xinjiang Publishing House of Science, Technology and Hygiene, 1-202 (in Chinese with English abstract)
Xie W, Song XY, Nie XY and Cheng SL. 2011.Features of the mantle source and tectonic setting of the Poshi Ni-Cu sulfide-bearing intrusion. Xinjiang, China. Earth Science Frontiers, 18(3): 189-200 (in Chinese with English abstract)
Xu XY, He SP, Wang HL and Chen JL. 2009. Geological Background of Ore Deposit in the Eastern Tianshan-Beishan Area. Beijing: Geological Publishing House (in Chinese with English abstract)
Xue CJ, Ji JS and Yang QJ. 2000. Subvolcanic hydrothermal matallogeny of the Cihai iron (cobalt) deposit, Xinjiang. Mineral Deposits, 19(2): 156-164 (in Chinese with English abstract)
Yang JH, Wu FY, Shao JA, Xie LW and Liu XM. 2006. In-situ U-Pb dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou formations in the Zhang-Xuan area, Northeast China. Earth Science, 31(1): 71-80 (in Chinese with English abstract)
Zhang MS, Zhang JZ, Wu JR, Chen SZ, Jin HJ and Li SQ. 1980. The study on the Cihai iron deposit. Geology of Exploration, 8: 25-32 (in Chinese with English abstract)
Zhao ZH, Guo ZJ, Zhang ZC, Shi HY and Tian J. 2004. The geochemical characteristics and tectonic setting of the Lower Permian basalts in Hongliuhe area at the Border between Xinjiang and Gansu Provinces. Geological Journal of China Universities, 10(4): 545-553 (in Chinese with English abstract)
Zheng Y, Chen J, Pang JC and Wang JL. 2009. Basic rock SHRIMP dating and its geologic value in Heishanling region of Beishan area, Xinjiang. Xinjiang Geology, 27(4): 320-324 (in Chinese with English abstract)
Zhou DW, Liu YQ, Xing XJ, Hao JR, Dong YP and Ouyang ZJ. 2006. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang. Science in China (Series D), 36(2): 143-153 (in Chinese)
Zhou MF, Leshen CM, Yang ZXetal. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions in Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257
Zuo GC, Li SX, Yu SNetal. 2004. The occurrence characteristics and metallo tectonic evolution of Cihai iron ore deposit in Xinjiang. Northwestern Geology, 37(1): 53-61 (in Chinese with English abstract)
附中文参考文献
陈世平, 王登红, 屈文俊, 陈郑辉, 高晓理. 2005. 新疆葫芦铜镍硫化物矿床的地质特征与成矿时代. 新疆地质, 23(3): 230-233
程松林, 王新昆, 吴华, 毛启贵, 敖松坚, 韩春明. 2008. 新疆北山晚古生代内生金属矿床成矿系列研究. 新疆地质, 26(1): 43-48
范育新, 马锦龙, 白云来. 2007. 塔里木北山地区橄榄岩-辉石岩的微量元素地球化学特征及其深部过程. 兰州大学学报(自然科学版), 43(1): 1-5
韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492
姜常义, 程松林, 叶书锋, 夏明哲, 姜寒冰, 代玉财. 2006. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因. 岩石学报, 22(1): 115-126
校培喜, 黄玉华, 王育习, 王兴安, 李育敬. 2006. 新疆哈密南部北山地区基性岩墙群的地质特征及形成构造环境. 地质通报, 25 (1-2): 189-193
李华芹, 陈富文, 梅玉萍, 吴华, 程松林, 杨甲全, 代玉财. 2006. 新疆坡北基性-超基性岩带I号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义. 矿床地质, 25(4): 463-469
李华芹, 梅玉萍, 屈文俊, 蔡红, 杜国民. 2009. 新疆坡北基性-超基性岩带10号岩体SHRIMP U-Pb 和矿石Re-Os同位素定年及其意义. 矿床地质, 28(5): 633-642
李锦轶, 肖序常, 陈文, 张思红, 李卫东. 2000. 新疆北部晚石炭世至晚三叠世地壳热演化——东准噶尔考克塞尔盖山荒草坡群的40Ar-39Ar定年. 地质学报, 74(4): 303-312
李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168
李月臣, 赵国春, 屈文俊, 潘成泽, 毛启贵, 杜安道. 2006. 新疆香山铜镍硫化物矿床Re-Os 同位素测定. 岩石学报, 22(1): 245-251
陆建军, 吴烈勤, 凌洪飞, 沈渭洲, 高剑峰, 黄国龙, 邓平, 谭正中. 2006. 粤北下庄铀矿田黄陂-张光营辉绿岩脉的成因元素地球化学和Sr-Nd-Pb-O同位素证据. 岩石学报, 22(2): 397-406
毛景文, 杨建民, 屈文俊, 杜安道, 王志良, 韩春明. 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义. 矿床地质, 21(4): 323-330
毛景文, Pirajno F, 张作衡, 柴凤梅, 杨建民, 吴华, 陈世平, 程松林, 张长青. 2006. 天山-阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系. 地质学报, 80(7): 925-942
毛启贵, 肖文交, 韩春明, 孙敏, 袁超, 闫臻, 李纪亮, 雍拥, 张继恩. 2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162
齐天骄, 薛春纪, 张招崇, 王银宏, 邵发志. 2012. 新疆磁海超大型铁矿区基性岩及其成矿背景指示. 地球科学, 37(6): 1315-1326
秦淑英. 1983. 新疆磁海铁矿床中辉石的研究与单斜辉石分类定名的多元三角图解法. 岩石矿物及测试, 2(4): 272-281
盛继福. 1985. 新疆磁海铁矿蚀变特征. 中国地质科学院矿产地质研究所所刊, (3): 89-109
苏本勋, 秦克章, 孙赫等. 2009. 新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征: 对同化混染和结晶分异过程的启示. 岩石学报, 25(4): 873-887
苏本勋, 秦克章, 孙赫, 王恒. 2010. 新疆北山地区旋窝岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究. 岩石学报, 26(11): 3283-3294
孙赫, 秦克章, 唐冬梅, 肖庆华, 苏本勋, 卢鸿飞. 2010. 新疆北山罗东岩体橄榄石特征对岩浆演化和硫化物熔离的指示. 科技导报, 28(18): 21-26
孙燕, 肖渊甫, 王道永, 邓江红, 吴德超. 2009. 新疆北山坡北基性-超基性杂岩特征及成矿远景. 成都理工大学学报(自然科学版), 36(4): 402-407
唐冬梅, 秦克章, 孙赫, 苏本勋, 肖庆华, 程松林, 李军. 2009. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, 25(4): 817-831
唐萍芝, 王玉往, 王京彬, 龙灵利. 2010. 新疆磁海铁矿区镁铁超镁铁岩地球化学特征及其地质意义. 地球化学, 39(6): 542-552
唐萍芝, 王京彬, 王玉往, 龙灵利, 张会琼, 廖震. 2011. 新疆磁海铁矿床中黑柱石的发现及其地质意义. 矿物学报, 31(1): 9-16
唐萍芝, 王玉往, 王京彬, 龙灵利, 廖震. 2012. 新疆哈密磁海铁矿床中钴的地球化学及地质意义. 矿物学报, 32(3): 379-385
王玉往, 沙建明, 程春. 2006. 新疆磁海铁(钴)矿床磁铁矿成分及其成因意义. 矿床地质, 25(增刊): 321-324
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf 同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220
吴华, 李华芹, 莫新华, 陈富文, 陆远发, 梅玉萍, 邓刚. 2005. 新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义. 地质学报, 79(4): 498-502
肖渊甫, 王道永, 吴德超, 邓江红,何政伟. 2000. 新疆北山构造带西段地质演化. 成都, 乌鲁木齐: 四川科学出版社,新疆科技卫生出版社, 1-202
颉伟, 宋谢炎, 聂晓勇, 程松林. 2011. 新疆坡十铜镍硫化物含矿岩体岩浆源区特征及构造背景探讨. 地学前缘, 18(3): 189-200
新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社
徐学义, 何世平, 王洪亮, 陈隽璐. 2009. 东天山-北山地区成矿地质背景图. 北京: 地质出版社
薛春纪, 姬金生, 杨前进. 2000. 新疆磁海铁(钴)矿床次火山热液成矿学. 矿床地质, 19(2): 156-164
杨进辉, 吴福元, 邵济安, 谢烈文, 柳小明. 2006. 冀北张宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素. 地球科学, 31(1): 71-80
张明书, 张建中, 邬介人, 陈书章, 金浩甲, 李世强. 1980. 磁海式铁矿地质特征初步研究. 地质与勘探, 8: 25-32
赵泽辉, 郭召杰, 张志诚, 史宏宇, 田杰. 2004. 新甘交界红柳河地区下二叠统玄武岩地球化学特征及其形成的构造背景. 高校地质学报, 10(4): 545-553
郑勇, 陈俊, 庞建材, 王君良. 2009. 新疆哈密北山黑山岭一带基性岩SHRIMP测年及地质意义. 新疆地质, 27(4): 320-324
周鼎武, 柳益群, 邢秀娟, 郝建荣, 董云鹏, 欧阳征健. 2006. 新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学(D辑), 36(2): 143-153
左国朝, 李绍雄, 于守南等. 2004. 新疆磁海铁矿床产出特征及成矿构造演化. 西北地质, 37(1): 53-61