陈静,赵锡海,王海平,李欣,曹亦宾
卒中已跃居为我国城市居民的第一位致死性疾病[1]。研究显示,颅内、外动脉粥样硬化易损斑块破裂是导致缺血性卒中的主要原因[2-3]。目前,血管狭窄程度是判定动脉粥样硬化病变严重程度的主要评价指标,并以此作为决策临床治疗的主要依据。然而,有研究显示,动脉血管表现为轻-中度狭窄的患者仍然存在发生缺血性事件(心肌梗死和脑梗死)的风险[4]。组织病理学研究证实,在动脉粥样硬化发生及发展过程中,血管常表现为正性重构效应,以确保靶器官足够的血流灌注[5]。此外有学者发现,发生正性重构的血管其粥样硬化斑块稳定性较差,更易引起脑血管事件[6]。因此,单纯评价病变血管的狭窄程度不能客观评价动脉粥样硬化病变的严重性,有必要对动脉管壁进行直接成像来评价斑块的生物学稳定性。近年来大量磁共振斑块成像研究证实,颈动脉斑块内出血和纤维帽破裂等易损斑块特征与缺血性脑血管事件密切相关[7]。本文将对脑血管粥样硬化斑块磁共振特征与缺血性卒中的相关性研究进展进行综述。
组织病理学研究发现,动脉粥样硬化易损斑块主要表现以下特征:①斑块内出血(intraplaque hemorrhage,IPH);②富含脂质的坏死核(lipid rich necrotic core,LRNC),薄纤维帽;③纤维帽破裂(fibrous cap rupture,FCR);④斑块表面钙化结节(juxtalumenal calcium nodule);⑤炎症细胞浸润(inflammation);⑥丰富的新生血管(neovasculature)等[8]。大量研究证实,上述易损斑块特征与缺血性脑血管事件密切相关[9-10]。
与组织病理学对照研究显示,高分辨率磁共振成像(high-resolution magnetic resonance imaging,HRMRI)多对比度斑块成像技术,包括时间飞跃法磁共振血管成像(time-of-flight magnetic resonance angiography,TOF MRA)、T1加权像、T2加权像以及质子密度加权像(proton density weighted imaging,PDW)等,能够准确识别IPH、LRNC、FCR及钙化等斑块成分,其敏感性和特异性分别为82%~96%和74%~100%,69%~100%和95%~100%,81%~100%和80%~96%,76%~84%和86%~91%[11-15]。有研究表明,动态增强MRI能够反映斑块内新生血管的程度,其敏感性和特异性分别为76%和79%[16]。此外,有学者发现动态增强MRI还可以反映斑块内炎症细胞浸润的情况,且与组织病理学有较高的一致性(r=0.75,P<0.001)[17]。
横断面研究证实,磁共振斑块成像不仅可以对斑块成分进行定性分析,同时还可以进行定量测量。Cai等[18]在2005年对21例症状性颈动脉狭窄患者进行磁共振成像研究,结果发现,应用磁共振管壁成像测量斑块LRNC(r=0.73,P<0.001)和纤维帽的大小(r=0.80,P<0.001)与组织病理学具有高度的一致性。Saam等[19]应用HRMRI对31例症状性颈动脉狭窄患者的颈动脉管腔面积、LRNC以及钙化进行定量研究,结果证实磁共振对于上述斑块特征的定量分析与组织病理学一致性较高(r=0.74~0.81,P<0.001)。动态增强MRI在分析斑块内新生血管方面亦有一定的潜力,其分析结果与组织病理学的相关系数高达0.80(P<0.001)[20]。
2.1 纤维帽破裂 纤维帽(fibrous cap,FC)是覆盖于脂质核表面的一层结缔组织[8],其厚度是决定斑块稳定性的一个重要因素。纤维帽一旦破裂,会导致局部血栓形成,从而引发缺血性脑血管事件。
早在2000年,Hatsukami等[13]对颈动脉狭窄的患者进行了磁共振斑块成像研究,依据纤维帽的厚度及完整性将其分为薄且完整、厚且完整及纤维帽破裂三类,结果发现纤维帽破裂或者薄纤维帽多见于症状性颈动脉狭窄组,而厚的纤维帽多见于非症状组。随后,Yuan等[21]对53例颈动脉狭窄的患者进行了MRI研究(28例症状性,包括短暂性脑缺血发作和脑梗死),结果发现,症状组患者FCR发生率明显高于非症状组(70% vs 9%,P=0.001);与厚的纤维帽相比,纤维帽过薄或破裂的患者近期发生卒中的风险是厚纤维帽患者的23倍。Lindsay等[7]在对81例颈动脉狭窄程度>30%的患者(症状组41人)进行磁共振斑块成像的研究中证实,症状组FCR的发生率明显高于非症状组(24% vs 5%,P=0.03),伴有FCR的患者其弥散加权像(diffusion-weighted imaging,DWI)及液体衰减反转恢复序列(fluid-attenuated inversion-recovery,FLAIR)上脑梗死病变的严重程度明显高于非FCR患者。在前瞻性研究中,FCR与缺血性卒中的相关性也得到了证实。Takaya等[22]应用磁共振斑块成像对颈动脉中度狭窄的患者进行长达38.2个月的随访研究,发现颈动脉斑块纤维帽过薄或破裂对脑血管事件的发生具有预测价值[危险比(hazard ratio,HR)17.0,P<0.05]。
2.2 斑块内出血 IPH是影响动脉粥样硬化斑块稳定性和加速粥样硬化斑块进展的一个关键因素[23]。Kwee等和Millon等研究发现,症状性颈动脉狭窄患者IPH发生率明显高于非症状性患者(48.7% vs 19.7%,P=0.002[24];39%vs 16%,P=0.002[25])。Xu等[26]在对107例大脑中动脉高度狭窄的患者进行HRMRI成像,结果发现症状组与非症状组IPH的发生率有显著性差异(19.6% vs 3.2%,P=0.01)。
多项前瞻性研究证实IPH对于缺血性脑血管事件具有一定的预测价值[3,7]。Altaf等[27]对66例颈动脉严重狭窄患者进行磁共振成像研究,在随后1个月的随访过程中,IPH组与非IPH组的脑血管事件的发生率分别为34%和9%,提示IPH明显增加了脑血管事件的风险[HR=4.8;95%可信区间(confidence interval,CI)1.1~20.9;P<0.05]。随后,Altaf等[28]又对64例颈动脉轻-中度狭窄(30%~69%)的患者进行了长达28个月的随访研究,结果发现,在14例发生了同侧颈动脉供血区缺血性事件的患者中,13例存在颈动脉斑块IPH,这意味着IPH对同侧颈动脉供血区的脑血管事件具有一定的预测价值(HR 9.9;95%CI 1.3~75.1;P=0.03)。另一项前瞻性研究证实,IPH是脑梗死发病(HR 35.0;95%CI 4.7~261.6;P=0.001)及复发(HR 12.2;95%CI 54.8~30.1;P<0.001)的独立危险因素[29]。
有证据表明,IPH会刺激并加速斑块进展甚至引发斑块破裂[30]。前瞻性研究发现,IPH组管壁厚度显著高于无IPH组(14.8% vs 3.7%,P=0.013),两组血管管腔体积减小的程度具有显著性差异(-16.4% vs -2.5%,P=0.013)[23]。Wang等[31]在2010年对41例颈动脉粥样硬化狭窄的患者进行磁共振管壁成像研究,通过对2个不同时间点(基线水平和随访18个月)的颈动脉管腔狭窄程度进行比较,发现症状组管腔狭窄程度明显高于非症状组(10.53%±12.29% vs 1.65%±7.74%,P=0.017)。由此可见,IPH可以促使斑块体积增大,加速动脉粥样硬化病变的进程。Yamada等近来研究证实,对于存在IPH的颈动脉斑块进行颈动脉支架术和内膜剥脱术其术后同侧静默脑梗死的发生率有显著差异(61% vs 13%,P=0.006),这一结果提示磁共振管壁成像评价斑块特征对于制订临床治疗策略具有一定的指导意义[32]。
2.3 富含脂质的坏死核 有研究显示,颈动脉斑块LRNC与缺血性脑血管事件密切相关[22]。有学者证实,LRNC的面积是同侧大脑中动脉供血区脑梗死的独立危险因素[优势比(odds ratio,OR)1.69,P=0.048][33]。横断面研究发现,症状性颈动脉狭窄的患者LRNC发生率明显高于无症状组(63.8% vs 28%,P=0.002)[34],但再发卒中与初发卒中患者相比,LRNC的发生率并无显著性差异(57.9% vs 49%,P=0.407)[35]。Zhao等[3]对181例颈动脉狭窄程度>50%的患者行HRMRI检查发现,LRNC的体积与同侧颈动脉供血区脑梗死体积呈明显正相关(P<0.05),这一点提示颈动脉斑块LRNC的大小可能是卒中严重程度的重要预测指标。Mono等研究了62例无症状性颈动脉狭窄患者的颈动脉斑块磁共振表现特征,发现16例患者的颈动脉斑块表现为大LRNC,在随后18.9个月的随访过程中,有5例患者发生脑血管事件,提示LRNC对脑血管事件具有一定的预测价值(HR 7.21;95%CI 1.12~46.28;P=0.037)[36]。
2.4 斑块表面钙化 目前,对于斑块稳定性研究的焦点多集中在IPH、纤维帽厚度和LRNC的大小等,而斑块钙化对斑块稳定性的影响一直存在争议。有学者认为,在评价钙化对于斑块稳定性影响的过程中,观察钙化在斑块内的分布部位可能比单纯测量钙化体积更为重要[37]。近年来,对于斑块表面钙化与斑块稳定性的相关性研究备受关注。斑块表面钙化与斑块完全钙化并非同一概念,斑块表面钙化可引起斑块表面应力变化,从而导致斑块破裂[38]。早在1993,Bostrm等[39]将破裂斑块组患者与非破裂斑块组进行对比研究,发现两组斑块表面钙化发生率并无统计学差异。而Gary等[40]在冠状动脉的研究中发现,在1117例患者中斑块表面钙化发生率高达48%,而仅有28%的患者存在斑块深部钙化,两者同时发生的概率为24%。Xu等[41]研究发现,斑块表面钙化常同时伴有IPH的发生。徐贤等[42]在对伴有颈动脉粥样硬化斑块表面钙化患者的研究过程中发现,不规则钙化组与大片状钙化组IPH发生率存在显著性差异(72.8% vs 28%,P<0.01);边缘钙化组较中央钙化组更容易发生IPH(71.1%vs 51.2%,P<0.05)。从以上研究中我们能够发现,斑块表面钙化可能是造成斑块不稳定的重要因素之一。有研究显示,斑块表面钙化的形成可能与糖尿病有关。Niccoli等[43]证实,糖尿病患者斑块表面钙化发生率明显高于非糖尿病患者(79% vs 54%,P=0.04)。
2.5 斑块炎症反应和新生血管 斑块炎症反应和新生血管也是影响斑块稳定性的重要因素。新生血管不仅能够加速动脉粥样硬化病变的进程,甚至可以诱发IPH和FCR,从而导致脑血管事件的发生。有证据表明,炎症活动参与动脉粥样硬化斑块的形成、进展以及破裂等斑块演变的全过程[44]。与组织病理学对照研究发现,动态增强MRI获得的Ktrans参数能够客观反映斑块内炎症细胞的数量以及新生血管的密度[17,20]。另一种新型靶向对比剂即超小超顺磁性氧化铁造影剂(ultrasmall superparamagmetic iron oxide,USPIO)能够在活体状态下检测颈动脉斑块内的炎症细胞活动度。Trivedi等[45]对30例颈动脉狭窄的患者注射USPIO前、后均进行磁共振成像,结果发现有24例患者颈动脉斑块出现局部增强,提示存在炎症活动。Tang等[46]对20例卒中患者在注射USPIO之前及36 h后各行一次多对比度MRI检查,发现所有症状侧颈动脉均存在不同程度的炎症反应。Howarth等[47]应用USPIO MRI成像方法比较症状性和非症状性颈动脉狭窄的患者颈动脉炎症反应程度,发现症状性患者颈动脉的炎症程度明显高于无症状性患者,提示动脉管壁的炎症反应与缺血性卒中的发病有一定相关性。上述研究结果提示我们,炎症可能是稳定斑块治疗的新靶点。
综上所述,脑血管易损斑块是导致缺血性卒中的主要危险因素。HRMRI作为一种无创性影像学检查方法,可以准确提供斑块形态学及内部成分等信息,为卒中的病因诊断提供了客观的依据。通过HRMRI对易损斑块进行早期识别和破裂风险评估,将有助于优化临床治疗方案,从而有效降低脑血管事件的发生率。总之,HRMRI技术为缺血性卒中的病因学诊断和预防带来了新的契机。
1 陈竺. 全国第三次死因回顾性抽样调查报告[M]. 北京:中国协和医科大学出版社, 2008:10-17.
2 Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease:a large worldwide burden but a relatively neglected frontier[J]. Stroke, 2008,39:2396-2399.
3 Zhao H, Zhao X, Liu X, et al. Association of carotid atherosclerotic plaque features with acute ischemic stroke:a magnetic resonance imaging study[J]. Eur J Radiol, 2013, 82:e465-e470.
4 Falk E, Shah PK, Fuster V. Coronary plaque disruption[J]. Circulation, 1995, 92:657-671.
5 Glagov S, Weisenberg E, Zarins CK, et al.Compensatory enlargement of human atherosclerotic coronary arteries[J]. N Engl J Med, 1987, 316:1371-1375.
6 Nakamura M, Nishikawa H, Mukai S, et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease:an intravascular ultrasound study[J]. J Am Coll Cardiol, 2001, 37:63-69.
7 Lindsay AC, Biasiolli L, Lee JM, et al. Plaque features associated with increased cerebral infarction after minor stroke and TIA:a prospective, case-control, 3-T carotid artery MR imaging study[J]. JACC Cardiovasc Imaging, 2012, 5:388-396.
8 Redgrave JN, Lovett JK, Gallagher PJ, et al.Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms:the Oxford plaque study[J]. Circulation,2006, 113:2320-2328.
9 Hong NR, Seo HS, Lee YH, et al. The correlation between carotid siphon calcification and lacunar infarction[J]. Neuroradiology, 2011, 53:643-649.
10 Turc G, Oppenheim C, Naggara O, et al. Relationships between recent intraplaque hemorrhage and stroke risk factors in patients with carotid stenosis:the HIRISC study[J]. Arterioscler Thromb Vasc Biol, 2012, 32:492-499.
11 Chu B, Kampschulte A, Ferguson MS, et al.Hemorrhage in the atherosclerotic carotid plaque:a high-resolution MRI study[J]. Stroke, 2004, 35:1079-1084.
12 Yuan C, Zhang SX, Polissar NL, et al. Identif i cation of fi brous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke[J]. Circulation, 2002, 105:181-185.
13 Hatsukami TS, Ross R, Polissar NL, et al. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with highresolution magnetic resonance imaging[J]. Circulation,2000, 102:959-964.
14 Bassiouny HS, Sakaguchi Y, Mikucki SA, et al. Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis[J]. J Vasc Surg, 1997, 26:585-594.
15 den Hartog AG, Bovens SM, Koning W, et al. Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis[J]. Eur J Vasc Endovasc Surg, 2013, 45:7-21.
16 Yuan C, Kerwin WS, Ferguson MS, et al. Contrastenhanced high resolution MRI for atherosclerotic carotid artery tissue characterization[J]. J Magn Reson Imaging, 2002, 15:62-67.
17 Kerwin WS, O'Brien KD, Ferguson MS, et al.Inflammation in carotid atherosclerotic plaque:a dynamic contrast-enhanced MR imaging study[J].Radiology, 2006, 241:459-468.
18 Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque:comparison of high-resolution, contrastenhanced magnetic resonance imaging and histology[J].Circulation, 2005, 112:3437-3444.
19 Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI[J]. Arterioscler Thromb Vasc Biol, 2005, 25:234-239.
20 Kerwin W, Hooker A, Spilker M, et al. Quantita-tive magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque[J]. Circulation,2003, 107:851-856.
21 Yuan C, Zhang SX, Polissar NL, et al. Identif i cation of fi brous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke[J]. Circulation, 2002, 105:181-185.
22 Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events:a prospective assessment with MRI--initial results[J]. Stroke, 2006, 37:818-823.
23 Takaya N, Yuan C, Chu B, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques:A high-resolution magnetic resonance imaging study[J]. Circulation, 2005,111:2768-2775.
24 Kwee RM, van Oostenbrugge RJ, Prins MH, et al.Symptomatic patients with mild and moderate carotid stenosis:Plaque features at MRI and association with cardiovascular risk factors and statin use[J]. Stroke,2010, 41:1389-1393.
25 Millon A, Mathevet JL, Boussel L, et al. Highresolution magnetic resonance imaging of carotid atherosclerosis identif i es vulnerable carotid plaques[J].J Vasc Surg, 2013, 57:1046-1051. e2.
26 Xu WH, Li ML, Gao S, et al. Middle cerebral artery intraplaque hemorrhage:prevalence and clinical relevance[J]. Ann Neurol, 2012, 71:195-208.
27 Altaf N, MacSweeney ST, Gladman J, et al. Carotid intraplaque hemorrhage predicts recurrent symptoms in patients with high-grade carotid stenosis[J]. Stroke,2007, 38:1633-1635.
28 Altaf N, Daniels L, Morgan PS, et al. Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events[J]. J Vasc Surg, 2008, 47:337-342.
29. Hosseini AA, Kandiyil N, Macsweeney ST, et al.Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke[J]. Ann Neurol, 2013, 73:774-784.
30 Yamada K, Song Y, Hippe DS, et al. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core[J]. J Cardiovasc Magn Reson, 2012, 14:81.
31 Wang Q, Wang Y, Cai J, et al. Differences of signal evolution of intraplaque hemorrhage and associated stenosis between symptomatic and asymptomatic atherosclerotic carotid arteries:an in vivo highresolution magnetic resonance imaging follow-up study[J]. Int J Cardiovasc Imaging, 2010, 26(Suppl atherosclerotic lesions[J]. J Clin Invest, 1993, 91:1800-1809.2):323-332.
32 Yamada K, Yoshimura S, Kawasaki M, et al. Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging[J]. Atherosclerosis, 2011, 215:399-404.
33 Chen XY, Wong KS, Lam WW, et al. Middle cerebral artery atherosclerosis:histological comparison between plaques associated with and not associated with infarct in a postmortem study[J]. Cerebrovasc Dis, 2008,25:74-80.
34 U-King-Im JM, Tang TY, Patterson A, et al.Characterisation of carotid atheroma in symptomatic and asymptomatic patients using high resolution MRI[J]. J Neurol Neurosurg Psychiatry, 2008, 79:905-912.
35 Liu XS, Zhao HL, Cao Y, et al. Comparison of carotid atherosclerotic plaque characteristics by high-resolution black-blood MR imaging between patients with firsttime and recurrent acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2012, 33:1257-1261.
36 Mono ML, Karameshev A, Slotboom J, et al. Plaque characteristics of asymptomatic carotid stenosis and risk of stroke[J]. Cerebrovasc Dis, 2012, 34:343-350.
37 Li ZY, Howarth S, Tang T, et al. Does calcium deposition play a role in the stability of atheroma?Location may be the key[J]. Cerebrovasc Dis, 2007,24:452-459.
38 Teng Z, He J, Sadat U, Mercer J, et al. How does juxtaluminal calcium affect critical mechanical conditions in carotid atherosclerotic plaque? An exploratory study[J]. IEEE Trans Biomed Eng, 2013,61:35-40.
39 Boström K, Watson KE, Horn S, et al. Bone morphogenetic protein expression in human
40 Mintz GS, Popma JJ, Pichard AD, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions[J]. Circulation, 1995,91:1959-1965.
41 Xu X, Ju H, Cai J, et al. High-resolution MR study of the relationship between superficial calcification and the stability of carotid atherosclerotic plaque[J]. Int J Cardiovasc Imaging, 2010, 26(Suppl 1):143-150.
42 徐贤, 具海月, 王新江, 等. 3T高分辨MR对颈动脉粥样硬化斑块表面钙化与斑块稳定性的量化分析[J]. 第二军医大学学报, 2008, 29:1483-1486.
43 Niccoli G, Giubilato S, Di Vito L, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event:a diabetes paradox[J]. Eur Heart J, 2013,34:729-741.
44 Ross R. Atherosclerosis--an inf l ammatory disease[J]. N Engl J Med, 1999, 340:115-126.
45 Trivedi RA, Mallawarachi C, U-King-Im JM, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages[J]. Arterioscler Thromb Vasc Biol, 2006,26:1601-1606.
46 Tang TY, Howarth SP, Walsh SR, et al. Contralateral carotid intraplaque hemorrhage may reduce the predictive value of fat-suppressed T1-weighted MRI in symptomatic carotid disease[J]. Stroke, 2007,38:e156-e157.
47 Howarth SP, Tang TY, Trivedi R, et al. Utility of USPIO-enhanced MR imaging to identify inf l ammation and the fibrous cap:a comparison of symptomatic and asymptomatic individuals[J]. Eur J Radiol, 2009,70:555-560.