基于MSC.Patran的路灯杆的模态分析

2014-01-10 01:13曾齐高李积彬
机电工程技术 2014年5期
关键词:边界条件路灯固有频率

曾齐高,罗 飞,李积彬

(1.深圳市龙岗职业技术学校,广东深圳 518172;2.深圳技师学院,广东深圳 518040;3.深圳大学机电与控制工程学院,广东深圳 518060)

基于MSC.Patran的路灯杆的模态分析

曾齐高1,罗 飞2,李积彬3

(1.深圳市龙岗职业技术学校,广东深圳 518172;2.深圳技师学院,广东深圳 518040;3.深圳大学机电与控制工程学院,广东深圳 518060)

运用Pro/Engineer软件建立路灯杆的3D模型,并利用该模型进行数据转换,其后使用MSC.Patran对导入的路灯杆模型进行模态分析,根据分析结果,得出在安装路灯杆时周围设备的振动频率尽量避开路灯杆的固有频率,以免发生共振,从而保证路灯杆的使用安全性。

MSC.Patran;路灯杆;模态分析;共振

0 引言

有限元方法(Finite Element Methods)这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题[1]。

近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源和科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃[2-3]。

有限元网格生成方法研究领域已取得许多重要成果,形成了独特的方法论体系,提出了许多有效的算法并研制出一些成功的工程化软件产品,现在用得比较多的软件主要有ANSYS、MSC. Patran和Deform等。而本文就是利用MSC.Patran对路灯杆进行模态分析。

1 路灯杆的基本参数及建模

路灯杆的材料是镀锌的合金钢,根据机械设计师手册[4]查得此材料的一些基本参数如表1所示。

表1 材料特性表

由于路灯杆不易进行直接测量,所以在午后通过阳光投影法可测得路灯杆的几何尺寸如下:底座:300 mm×300 mm×10 mm、主杆下段外径D1:160 mm 长度L1:2 000 mm,壁厚b:5 mm、主杆上段外径 D2:90 mm长度 L2:5 890 mm ,壁厚b:5 mm、反光罩简化为一等腰梯形,上底:760 mm ;下底:1 100 mm ; 高 :1 180 mm。根据以上数据并利用Pro/ ENGINEER Wild⁃fire 3.0对路灯杆进行3D实体建模,结果如图1所示。

图1 路灯杆的3D图

但是由于MSC.Patran软件中的需要的是.stp格式的文件,而Pro/ENGINEER Wildfire 3.0所生成的是.prt格式的文件,所以要进行数据转换,即把.prt格式文件转化成.stp格式文件的,输出step文件时选择实体和壳,点击确定即可。

2 有限元分析过程

在本文中,首先运用Pro/Engineer建立3D模型,再用MSC.Patran软件进行FEM分析,求解出固有频率和其相应的振型[5],具体步骤如图2所示。

图2 FEM分析步骤

(1)MSC建模

在进行FEM分析之前,首先需要新建一个MSC分析文件,其新建文件及文件导入步骤为:New Database→File→Import,输入文件名即可。

(2)网格划分

网格划分是有限元分析中的一个重要的步骤,MSC软件中有自动划分网格的功能,选择MESH→SOLID,然后选择输入实体名称,再确定网格大小即可。

(3)边界条件设置

网格划分结束后,就是对待分析的零件进行边界条件设置,其中边界条件包括边界运动,边界载荷,边界温度等设置,本次分析只需对边界运动过程,以及固定边界,以及受力等进行设置。

若对零件进行不同的状态分析,则要对边界受力进行设置,模态分析则不需要设置力的边界条件。而静应力分析,以及压杆稳定性分析则需要对力进行设置。

(4)材料参数设置

边界条件设置完成后则需对零件材料进行设置,由于路灯杆的材料选用为镀锌的合金钢,点击Input Options输入表1中材料特性参数。

(5)路灯杆的材料特性选择

刚才所设置的材料特性要赋予路灯杆,点击Input Properties将材料特性赋予路灯杆。

(6)分析计算

MSC.Patran软件可以静应力分析(LINEAR STATIC),压杆稳定性(BUCKLING),模态分析(NORMAL MODES)等有限元动态性能分析,本文只对路灯杆进行模态分析(NORMAL MODES)。不同分析选择下面对话框中不同选项。

(7)模态分析结果

在不同的频率下的模态结果如图3所示。

由图3可知,路灯的前7阶模态的频率为1.124 6 Hz、1.126 3 Hz、6.533 Hz、8.830 1 Hz、11.056 Hz、20.707 Hz、22.788 Hz,前2阶模态比较接近,3—5比较接近,6和7阶模态较接近。前7阶段模态对应的振形主要是路灯部分发生扭转变形,其中前2阶主要是灯头发生摆动,3-7阶不但是灯头发生摆动,同时灯杆也发生弯曲摆动。交流电的工频为50 Hz,而路灯的前7阶模态远离其交流电工频,避免了电流引起的振动。

图3

3 结论

有限元分析方法(FEM)作为一个对产品的预先处理方法,现已广泛被用于工程设计以及制造中,本文利用MSC.Patran对路灯杆进行模态分析,得到了路灯杆的七种模态,路灯杆的固有频率为1.124 6 Hz表现为水平弯曲,固有频率为1.126 3 Hz表现为垂直弯曲,固有频率为8.830 1 Hz表现为扭曲。根据该模态分析结果:

(1)前7阶模态远离工频,保证在通电情况下避免发生共振。

(2)在安装路灯杆时周围设备的振动频率尽量避开路灯杆的固有频率,以免发生共振,从而路灯杆的使用安全性。

[1]李积彬,冯平.计算机辅助工程:CAE有限元分析篇[Z].深圳:深圳大学,2005.

[2]罗飞,曾齐高,陈恒亮,等.基于Pro/Mechanica的电梯曳引机承重梁的模态分析[J].机电工程技术,2014(02):57-60,101.

[3]谢占功,李积彬,罗飞,等.深海潜水泵轴系的有限元分析研究[A].2009海峡两岸机械科技论坛论文集[C].2009:476-481.

[4]毛谦德,李振清.机械设计师手册[M].北京:机械工业出版社,2000.

[5]宋雷,邵明,王春艳.基于MSC.Patran的粉末成形模架模态分析[J].机电工程技术,2008(02):46-47.

Modal Analysis of Lampposts Based on MSC.Patran

ZENG Qi-gao1,LUO Fei2,LI Ji-bin3
(1.Shenzhen Longgang Vocational Technical School,Shenzhen518172,China;2.Shenzhen Institute of Technology,Shenzhen518040,China;3.College of Mechatronics and Control Engineering,Shenzhen University,Shenzhen 518060,China)

In this paper,Pro/Engineer software was used to build the 3D model of lampposts,and use the model for data conversion,and MSC.Patran was used to modal analysis of lampposts after importing model.Based on the analysis results,obtained when installing lampposts around vibration frequency devices try to avoid the natural frequency of light poles to avoid resonance,and thus the use of lampposts security.

MSC.Patran;lampposts;modal Analysis;resonance

TP391.77

A

1009-9492(2014)05-0106-03

10.3969/j.issn.1009-9492.2014.05.027

曾齐高,男,1984年生,江西广丰人,硕士研究生,工程师/高级技师。研究领域:机电一体化。已发表论文5篇。

(编辑:向 飞)

2014-03-20

猜你喜欢
边界条件路灯固有频率
现场测定大型水轮发电机组轴系的固有频率
一类带有Stieltjes积分边界条件的分数阶微分方程边值问题正解
带有积分边界条件的奇异摄动边值问题的渐近解
路灯
为什么高速公路上不用路灯照明
带Robin边界条件的2维随机Ginzburg-Landau方程的吸引子
总温总压测头模态振型变化规律研究
A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients
转向系统固有频率设计研究
带非齐次边界条件的p—Laplacian方程正解的存在唯一性