王 震
(广东青年职业学院,广东广州 510507)
线粒体是细胞能量代谢的主要场所,其生物合成过程有少数新蛋白产生,一千多种多肽参与,仅有少数是线粒体DNA编码,其余核DNA编码[1]。线粒体生物合成是核基因和线粒体基因共同参与调控[2]。Davies等研究表明[3,4]运动或电刺激均能诱导线粒体生物合成。运动诱导线粒体生物合成的主要步骤:起始信号→蛋白质翻译→进入线粒体,运动诱导肌肉中线粒体数量增多。因此,了解运动引起线粒体生物合成的相关调节因子,对提高耐力水平并可为医治因线粒体功能障碍引起的疑难杂症提供帮助。本文是作者对近几年来关于运动诱导线粒体生物合成各种调节因子研究成果的综述。
内源性生成NO调控线粒体生物合成,揭示eNOS作为一种分子转换子,引发线粒体生物合成过程[5,6]。2003 年,有研究发现气态 NO 通过可溶性鸟苷酸环化酶(sGC)——环一磷酸鸟苷(cGMP)信号通路激活PGC-1α诱导线粒体生物合成。冷刺激激活β3-肾上腺受体产生NO,能提高细胞内Ca2+和cAMP的含量,诱导PGC-1α基因过度表达。NO能激发不同细胞系中线粒体生物合成,如棕色脂肪组织(BAT)、3T3-L1和 HeLa细胞等[7]。NO的这种效应是通过sGC-cGMP途径,激活线粒体生物合成的关键转录因子PGC-1α。
身体的生理刺激,包括运动、热冷刺激和限食均能调控线粒体生物合成,主要是通过调控 NO[7,8]。B淋巴细胞慢性白血病(CLL)患者内源性NO水平较高,结果含有的线粒体多于正常淋巴细胞,经检测多数CLL标本发现NRF-1和Tfam表达与细胞内NO水平相关。外源性NO处理B细胞导致线粒体体积大幅提高[9]。NO补剂可上调安静状态下骨骼肌COXIV mRNA的表达,其机制可能是骨骼肌中PGC-1αmRNA 表达上调[10]。耐力训练可上调骨骼肌PGC-1α含量和COXIV mRNA的表达水平,促进骨骼肌线粒体转录因子的表达,加快线粒体生物合成速率[11]。
胞奖内Ca2+是诱导肌肉收缩的基本信号通路,通过运动能激活骨该信号传导通路,可调节线粒体生物合成。通过细胞培养的方法增加胞浆内Ca2+,导致线粒体数量增加,当减少胞浆内Ca2+释放时,抑制了这一过程的发生[12]。
Ca2+介导线粒体生物合成的研究集中在钙调神经磷酸酶(CaN),是一种钙离子/钙调素依赖性蛋白激酶(CaMK)[13]。抑制CaN表达不影响运动刺激PGC-1α诱导的线粒体生物合成[14]。运动诱导骨骼肌PGC-1α调节与CaN之间的关系需要进一步研究证实。激活Ca2+/CaMK可使许多蛋白磷酸化,从而促使肌细胞增强因子-2从抑制复合体中释放出来,如组蛋白脱乙酰酶HDAC1/2,抑制因子Cabin-1和适应子mSin3,这些因子的释放可能与线粒体生物合成增多有关[15]。Wu等[16]通过转基因小鼠研究发现,骨骼肌表达具有活性的CaMK能促进PGC-1α表达,加快线粒体生物合成,表明CaMK可能是PGC-1α上游促进线粒体生物合成的关键信号因子,并在同样的实验中发现选择性表达Ca2+/CaMKⅣ的活性,导致线粒体DNA复制能力提高与线粒体生物合成相关基因表达增强。有研究证实[17]:在骨骼肌细胞L6中发现,增加活性氧可以促进 PGC-1α表达和线粒体生物合成,同时Ca2+/CaMK含量也增多。
ROS已被证明影响线粒体生物合成,形态和功能。ROS对线粒体生物合成的有益影响可能是通过上调转录因子 PGC-1α、AMPK 活性[18]。Halliwell等[19]研究发现,剧烈运动导致线粒体电子漏生成,使外源性ROS生成增多,在MnSOD作用下快速地被歧化或自发性歧化生成H2O2。由于H2O2比其它的ROS更加稳定,能够自由地跨膜扩散且距离较长,被认为最有可能参与细胞信号的传导作用。Lander[20]对哺乳动物实验研究认为,H2O2做为一种信使在信号传导通路中起某种作用。Lee等[21]实验证明,H2O2能诱导培养人类肺成纤维细胞线粒体数量、体积以及mt DNA的含量。有研究者发现,在衰老的细胞中,线粒体生物合成相关因子NRF-1和PGC-1mRNA,用H2O2处理30分钟后,其表达水平显著升高[22]。
正常条件下,多数ROS来源于线粒体呼吸链。测得不完全通过电子呼吸链氧气转化为活性氧的百分率约为1%至4%,运动中ROS增加也可能由其他原因所致[23]。质膜上黄素蛋白氧化还原酶系统,是肌肉收缩活动时细胞外过氧化物产生的重要激活器[24]。ROS已被证实能诱导网状线粒体分支和延伸,线粒体的复制随骨骼肌细胞中ROS增加而增多[25]。线粒体体积随着自身DNA的增加而增大,这个反应是通过PGC-1a和NRF-1调节出现的,因为PGC-1a和 NRF-1可上调外源ROS的表达[26]。最近研究[27]表明ROS能增强启动子PGC-1a的活性及表达,通过两条通路实现其一是依靠AMPK通路,其二是独立于AMPK通路。这些通路中有活性氧存在的地方可观察到线粒体生物合成增加。
研究发现[28],运动能激活腺苷单磷酸活化蛋白激酶(AMPK)。激活的AMPK能诱导PGC-1α促进线粒体生物合成,这种酶是由一个催化亚基α和两个调节亚基β和γ组成的一种异三聚体。催化亚基α1和α2异构体在骨骼肌中有表达作用,运动可高度激活α2异构体。α2 AMPK的活化随着5-氨基咪唑-4甲酰胺核苷抑制而发生。通过5-氨基咪唑-4甲酰胺核苷的药理作用激活AMPK可增加PGC-1a mRNA[29]。这可能是转录活化作用的调节,因为AMPK的活化导致PGC-1a启动子活性增强[30]。缺乏AMPK活性遗传的老鼠对AMP增长的反应不表现出PGC-1a和线粒体含量增加[31]。
运动中当ATP/AMP降低时,AMPK活性就升高[32]。Raynald 等[33]研究表明,AMPK 在骨骼肌运动应激过程中起重要作用,通过诱导中间产物变化加速线粒体生物合成。此外,使用5-氨基咪唑-4酰胺核苷长期激活AMPK会导致线粒体酶的增加,如骨骼肌中细胞色素C、柠檬酸合成酶和苹果酸脱氢酶[34]。因此,激活AMPK是一个重要调节线粒体生物合成因子,是在肌细胞中能源供求失衡的条件下起作用的。研究表明,使用药物激活AMPK,促进骨骼肌PGC-1α表达和线粒体生物合成,反之亦然。有实验证实[35],基因干预AMPK小鼠运动时仍能诱导骨骼肌PGC-1α表达和线粒体生物合成。因此,对运动诱导骨骼肌PGC-1α表达和线粒体生物合成是否与AMPK的激活有关仍存在争议。
过氧化物酶体增殖因子激活受体(PPARγ)共激活因子-1α(PGC-1a)是细胞蛋白质代谢领域研究的热点。它已被确定为多种代谢过程重要的调节器,包括肝脏中糖原生成棕色脂肪产热,骨骼肌中肌纤维类型的分化,肌肉和心脏中线粒体生物合成[36]。不同肌肉PGC-1a表达能增加线粒体内物质含量,从而产生对耐力训练的适应,包括I型肌纤维比例的增加并提高抗疲劳能力[37,38]。
PGC-1α刺激NRF和mtTFA表达以激活核编码和线粒体基因表达。PGC-1α与PPARγ和NRF-1不结合时处于相对静止状态,结合时会募集活化蛋白SRC-1和p300的组蛋白乙酰转移酶[39]。经ROS诱导的氨基己糖活化途径,尽可能地减少了PPARγ 与 p300、SRC-1、PGC-1α 三者的联系,可有效减少PGC-1α的活化,从而降低NRF诱导的线粒体基因转录[40]。多数线粒体最初的生物合成都与PGC-1a和核呼吸因子NRF-1、NRF-2的相互作用有关。NRF-1和NRF-2结合的地点位于激活多个核基因编码的线粒体蛋白质上,这些蛋白质包括细胞色素c、电子运输链复合物的组成部分、线粒体进口蛋白质、血红素合成蛋白质、线粒体转录因子A(Tfam)。因此,PGC-1a能有效地双重调控线粒体基因组生物合成。目前有关PGC-1α对mt-TFA表达的影响与线粒体生物合成的研究甚少。
PGC-1a活性影响最重要的是上游激酶p38丝裂原活化蛋白激酶。p38的磷酸化通过调节蛋白降解上调PGC-1a的活性[41],PGC-1a可逆的乙酰化调节p38的活性。由T1(SIRT1)调节PGC-1a脱乙酰,可提高PGC-1a协同转录糖异生基因的作用,但对细胞色素C和β-ATP合酶转录共活化作用没有影响[42]。因此,翻译后的修饰能改变PGC-1a所涉及的线粒体生物合成相关基因协同转录的能力。身体活动方式的改变能调节PGC-1a的表达,单一的大强度训练使大鼠、人PGC-1a mRNA和蛋白质大量增加[43,44,45],基因表达的增加在练习后最初两小时最明显。大鼠有计划的长时间训练过程中PGC-1a蛋白逐渐增多[46]。急性运动后PGC-1a mRNA增加归因转录量的增加微乎其微[47],主要是练习产生的信号对PGC-1a表达起作用。p38是下游Ca2+/CaMK信号通路,增加胞浆Ca2+导致PGC-1a表达和肌肉线粒体生物合成加强[48]。有实验表明p38蛋白激酶磷酸化、PGC-1a的活化能增强结合和激活转录因子,同时调控PGC-1a的活性和表达。p38激活转录因子2(ATF-2),然后结合位于PGC-1a上的cAMP诱导PGC-1a转录。研究认为[49]:通过激活 CAMK到 p38通路,Ca2+诱导肌肉PGC-1a增加和线粒体生物合成加强,抑制p38将阻止Ca2+诱导线粒体生物合成。研究[50]表明钙调蛋白激酶和p38通过激活cAMP反应蛋白因子和ATF-2可提高PGC-1a的活性。这些结果表明通过p38激活PGC-1a可调节Ca2+及其他转录因子促进线粒体生物合成。
PGC-1a有一个肌细胞增强因子-2(MEF2)固定的结合位点,MEF2是钙调蛋白激酶和p38激活的转录因子。电刺激大鼠骨骼肌激活PGC-1a启动子,当MEF2或cAMP反应因子固定结合位点变化时就没有这种效果[51]。PGC-1a通过MEF2相互作用激活自身启动因子,其结果使钙调磷酸酶加强。在PGC-1a启动因子中发现了p53的结合位点[52],暗示p53可能对调节PGC-1a的稳定性起作用。在缺乏p53的动物肌肉中发现PGC-1a含量减少[53]。这些研究指出起协同作用的MEF2、cAMP反应蛋白结合因子、ATF-2、p53转录因子可能改变PGC-1a对大多数练习产生信号反应的转录。
PGC-1a对线粒体生物合成很重要,但是否需要运动诱导线粒体生物合成仍不清楚?切除PGC-1a老鼠(PGC-1a–/–)骨骼肌线粒体体积小于野生鼠,且Tfam、细胞色素C和细胞色素氧化酶亚基6(COXIV)的表达随之减少[54]。PGC-1a –/–需要增加输出功率满足慢肌代谢的需要,从而造成能量储备下降。具体的说,PGC-1a–/–表现出的耐力运动及抗疲劳能力减弱,无线粒体的动物显示ADP刺激呼吸能力下降。因此,PGC-1a维持肌肉线粒体含量和功能、耐力运动起非常重要的作用。但PGC-1a的缺乏不影响耐力训练对线粒体生物合成的效果,因为在无PGC-1a的动物中标记类蛋白质随训练的增多是一样的明显。这也暗示在耐力训练中选择转录因子可替代动物中缺乏的PGC-1a,协调运动引起线粒体含量增加。
运动诱导线粒体生物合成的相关调节因子较多,它们通过不同途径诱导线粒体生物合成,且因子之间信号通路传导和相互作用可能是运动诱导线粒体生物合成的启动因素。线粒体是细胞能量加工场,其能量合成的调控因子较多,也是各种中间代谢产物的源头,这些使线粒体生物合成过程和影响因子变得更加复杂。运动对加速线粒体生物合成速度起重要作用。一系列信号通路传导不但可以提高耐力水平,而且对改善肌肉退行性改变,线粒体功能障碍有重要意义。从而提高肌肉质量和工作效率,这将成为运动医学未来研究的热点问题。
[1]Hoppeler H,Luthi P,Claassen H,et al.The ultrastructure of the normal human skeletal muscle.A morphometric analysis on untrained men,women and well-trained orienteers[J].Pflugers Arch,1973,344(3):217-232.
[2] Garesse R,Vallejo CG.Animal mitochondrial biogenesis and function:A regulatory cross-talk between two genomes[J].Gene,2001,263(1-2):1-16.
[3]Davies KJ,PackerL,Brooks GA.Biochemical adaptation of mitochondria,muscle,and whole-animal respiration to endurance training[J].Arch Biochem Biophys,1981,209:539-554.
[4] Takahashi M,Hood DA.Chronic stimulation-induced changes in mitochondria and performance in rat skeletal muscle[J].J Appl Physiol,1993,74:934-941.
[5]Ballinger SW,Patterson C,Knight-LozanoCA,et al.Mitochondrial integrity and function in atherogenesis[J].Circulation,2002,106(5):544-549.
[6]Quagliaro L,PiconiL,AssaloniR,et al.Intermittenthigh glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role ofprotein kinase C and NAD(P)Hoxidase activation[J].Diabetes,2003,52(11):2795-804.
[7]Nisoli E,Clementi E,Paolucci C,et al.Mitochondrial biogenesis in mammals:The role of endogenous nitric oxide[J].Science,2003,299:896-899.
[8]Nisoli E,Tonello C,Cardile A,et al.Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS[J].Science,2005,310:314-317.
[9]Carew JS,Nawrocki ST,Xu RH,et al.Increased mitochondrial biogenesis in primary leukemia cells:the role of endogenous nitric oxide and impact on sensitivity to fludarabine[J].Leukemia,2004,18:1934-1940.
[10]刘晓然,丁虎,文立,等.一氧化氮与运动诱导的线粒体生物合成[J].中国运动医学杂志,2009,28(3):104-108.
[11]刘晓然,丁虎,孙卫东,等.NO-cGMP参与大鼠骨骼肌线粒体生物合成:耐力训练和L-精氨酸补充的作用[J].中国运动医学杂志,2007,26(6):663-668.
[12]Ojuka EO,Jones TE,Han DH,et al.Intermittent increases in cytosolic Ca2+stimulate mitochondrial biogenesis in muscle cells[J].Am J Physiol,2002,283:1040-1045.
[13]Chin ER,Olson JA,Richardson EN,et al.A calcineurindependent transcriptional pathway controls skeletal muscle fiber type[J].Genes Dev,1998,12:2499-2509.
[14]Garcia-Roves PM,Huss J.Role of calcineurin in exercise-induced mitochondrial biogenesis[J].Am J Physiol,2006,290:1172-1179.
[15]Corcoran EE,Means AR.Defining Ca2+/calmodulindependent protein kinase cascades in transcriptional regulation[J].J Biol Chem,2001,276:2975-2978.
[16]Wu H,Kanatous SB,Thurmond FA.Regulation of mitochondrial biogenesis in skeletal muscle by CaMK[J].Science,2002,296:349-352,349.
[17]Hashimoto T,Hussien R,Oommen S,et al.Lactate sensitive transcription factor network in L6 cells:activation of MCT1 and mitochondrial biogenesis[J].Faseb J,2007,21(10):2602.
[18] Isabella Irrcher,Vladimir Ljubicic,David A.Interactions between ROS and AMP kinase activity in the regulation of PGC-1 transcription in skeletal muscle cells[J].Am J Physiol,2008,210:213-214.
[19] Halliwell B,Gutteridge J.Free radicals in biology and medicine[J].Oxford:Clarendon Press,1989,12:112-114.
[20]Lander HM.An essential role for free radicals and derived species in signal transduction[J].Faseb J,1997,11:118-124.
[21]Lee HC,Yin PH,Lu CY,et al.Increase of mitochondrial and mitochondrial DNA in response to oxidative stress in human cells[J].Biochem J,2000,348(2):425-432.
[22]Lee HC,Yin PH,Chi CW,et al.Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence[J].J Biomed Sci,2002,9(6):517-526.
[23]McArdle A,vander,Meulen,et al.Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space[J].Am J Physiol,2004,286:1152-1158.
[24]Pattwell DM,McArdle.Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells[J].Biol Med,2004,37:1064-1072.
[25]Pesce V,Cormio.Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles[J].Med Sci,2005,60:715-723.
[26] Suliman,HB,Carraway,et al.Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1[J].J Biol Chem,2003,278:41510-41518.
[27]Irrcher I,Ljubicic.Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells[J].Am J Physiol,2009,296:116-123.
[28]Winder WW,Hardie DG.Inactivation of acetyl-CoA carboxylase and activation ofAMP-activated protein kinase in muscle during exercise[J].Am J Physiol,1996,270:299-304.
[29] Irrcher,I,Adhihetty,et al.PPARgamma coactivator-1alpha expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations[J].Am J Physiol,2003,284:1669-1677.
[30]Irrcher,I,Ljubicic,et al.AMPactivated protein kinaseregulated activation of the PGC-1alpha promoter in skeletal muscle cells[J].Plos One,2008,3:3614.
[31]Zong,H,Ren,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Sci USA,2002,99:15983-15987.
[32]Ponticos M,Lu QL,Morgan JE,et al.Dual regulation of the AMP-activated protein kinase povides a novel mechanism for the control of creatine kinase in skeletal muscle[J].Embo J,1998,17:1688-1699.
[33]Raynald B,Jian MR,Kevin S,et al.Chonic activation of AMP kinase in NRF-1 activation and mitochondrial biogenesis[J].Am J Physiol Endocrinol Metab,2001,281:1340-1346.
[34]Winder,WW,Holmes,et al.Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle[J].J Appl Physiol,2000,88:2219-2226.
[35]Jorgensen,SB,Wojtaszewski JF,et al.Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J].Faseb J,2005,19:1146-1148.
[36] Lin,J,Handschin,et al.Metabolic control through the PGC-1 family of transcription coactivators[J].Cell Metab,2005,1:361-370.
[37]Calvo,JA,Daniels,et al.Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake[J].2008,4:212-215.
[38]Lin,J,Wu,et al.Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J].Nature,2002,418:797-801.
[39]Zou MH,Shi C,Cohen RA.High glucose via peroxynitrite causes tyrosine nitration and inactivation ofprostacyclin synthase that is associated with thromboxane/prostaglandin H2receptor-mediated apoptosis and adhesion molecule expression in cultured human aorticendothelial cells[J].Diabetes,2002,51(1):198-200.
[40]Craven PA,Melhem MF,Phillips SL,et al Overexpression of Cu2+/Zn2+superoxid dismutase protects against early diabetic glomerular injury in transgenic mice[J].Diabetes,2001,50(3):2114-2125.
[41] Akimoto,T,Pohnert,et al.Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway[J].J Biol,2005,280:19587-19593.
[42]Rodgers,JT,Lerin,et al.Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J].Nature,2005,434:113-118.
[43]Baar,K,Wende,et al.Adaptations of skeletal muscle to exercise:rapid increase in the transcriptional coactivator PGC-1[J].Faseb J,2002,16:1879-1886.
[44]Norrbom,J,Sundberg,et al.PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle[J].J Appl Physiol,2004,96:189-194.
[45]Pilegaard,H,Saltin,et al.Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle[J].J Physiol,2003,546:851-858.
[46]Taylor,EB,Lamb,et al.Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance:effects of time and intensity[J].Am J Physiol,2005,289:960-968.
[47]Pilegaard,H,Saltin,et al.Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle[J].J Physiol,2003,546:851-858.
[48]David C,Wright,Paige C,et al.Calcium Induces Increases in Peroxisome Proliferator-activated Receptor_Coactivator-1_and Mitochondrial Biogenesis by a Pathway Leading to p38 Mitogen-activated Protein Kinase Activation[J].Jbc,2007,234,432-435.
[49]Handschin,C,Rhee,et al.An autoregulatory loop controls peroxisome proliferatoractivated receptor gamma coactivator 1alpha expression in muscle[J].Sci USA,2003,100:7111-7116.
[50]Akimoto,T,Sorg,et al.Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice[J].Cell Physiol,2004,287:790-796.
[51]Irrcher,I,Ljubicic,et al.AMPactivated protein kinaseregulated activation of the PGC-1alpha promoter in skeletal muscle cells[J].Plos One,2008,3:3614.
[52]Saleem,A,Adhihetty,et al.Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle[J].Physiol Genomics,2009,37:58-66.
[53]Leone,TC,Lehman,et al.PGC-1alpha deficiency causes multi-system energy metabolic derangements:muscle dysfunction,abnormal weight control and hepatic steatosis[J].PLoS Biol,2005,3:101.