信用评估的常用方法浅析

2013-08-15 00:51:28汪晶瑶
时代金融 2013年5期
关键词:数理分析法信用

汪晶瑶

(云南大学,云南 昆明 650500)

信用评估对于整个社会经济发展至关重要,使用定量的方法支持定性的决策是现阶段、也是未来评估模型发展方向。大多参考文献仅根据信用评估数据某一方面特点建模,得出的结论运用面较为狭窄,无法整个体系看待信用评估方法的优缺点和其他使用方向。本文旨在沿着信用评估方法发展历程,从专家评分法到数理方法、人工智能方法,比较分析各种方法的适用条件、方向、方法精确度、稳健度及经济含义解释能力为、建模的效率等。

一、古典信用评估方法

古典信用评估方法中最经典的方法是专家评分法。专家评分法是通过结构化的方法模拟经验丰富的专家来确定信用决策的分析过程。它的最大特点是将信用评估的决策权交由评估机构中的经过长期训练、具有丰富经验的信贷管理人员所掌握。专家评分法的优点突出表现在,没有必要用定量评估的情况下,可以很灵活、简便地操作,得出相应的定性结论。但是,由于专家评分法中所有相关因素的权重确定均带有一定的主观臆断,使得信用评估效率低下,所耗费的成本高昂。在信用评估机构内部,需要依赖有经验的专家评定,使得人为因素所带来的误差偏大。为了让信用评估所得到的结果具备推广型、可移植性,下面将在信用评估中引入数理方法。

二、信用评估中的数理方法

信用评估最初的分析方法并未将数理统计知识引入,仅是基于规则的分析方法,主要依靠内部和外部的信用经验,建立一个公式或一套规则,来评价客户信用值。但当数学统计理论知识逐渐完善,数量化的分析方法被大量运用到信用评估中去,为评估决策者提供准确的数据信息。下面将探讨几种在信用评估中常见的数理方法。

(一)判别分析法

信用评估中最初收集来的原始数据,庞大而繁杂,需要对其按照某种属性进行分类,判别分析法即是用于解决这种分类问题的方法。将定义在已选变量的集合上的随机观测样本,建立判别函数进行分类,即是根据已知类别的若干样本,从中总结出来分类的规律性,建立判别公式。

(二)数学规划法

数学规划法是一种在线性、非线性等式或不等式的约束条件下,求解线性、非线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。约束条件是指实现目标的限制影响因素,用一组等式或不等式来表示。有了约束条件和目标函数后,求出最优解,则可找到影响因素的权重系数。

(三)回归分析法

回归分析法是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在计量经济学中广泛运用。对于多个自变量而言,很难定性说明之间相互关系和对因变量的解释程度,通过回归分析,得出回归方程、显著性水平、相关性矩阵,即可用数字量化方法解释。按照自变量与因变量之间关系划分,回归分析法分为线性回归分析和非线性回归分析。可以根据样本数字特征,以及求解复杂程度考虑是否采取线性或非线性方法。

(四)主成分分析法

主成分分析法,是一种将多个变量通过线性变换以选出其中较少的重要变量的多元统计分析方法。其实质内容就是,设法把原来变量经过重新组合,成为一组新的互相无关的综合变量,同时根据实际从原先变量中取出几个较少的综合变量尽可能多地反映原来变量的信息。数学上这也是一种处理降维的方法。

(五)层次分析法

层次分析法将一些复杂的问题分解成递阶层次结构,构造判断矩阵,通过分析影响这个问题的各因素之间的相互关系以及对问题影响程度的大小来确定层次中各因素对上一层次因素的重要性和权重,并最终确定各因素对总目标的权重。

(六)数理方法总结

数理方法运用到信用评估中,最大的优点是将繁杂毫无规律的定性变量变成确定的定量结果,为信用评估提供大量的数理依据。判别分析法和数学规划法的核心思想都是设定已知界定目标,按照目标的办法,将原始数据划分成不同类别。方法原理简单易懂,并且操作步骤明确。回归分析法可以很明确地得出信用评估中各种变量与目标变量之间的影响关系,以及各变量间的数理相关性,初步估计变量的线性及非线性数量关系,确定因素间相关性,用于对数据有初步量化认识。主成分分析法是用较少的主成分来表示原始数据中尽可能多的信息,将筛选出来的因素带入层次分析法中,通过初步的数据处理后以确定各个因素应配以的权重系数,分级排列、层层递推。层次分析法所得出的最终信用评估具体得分,可以用于纵向及横向的评比,应用广泛,可操作性、可移植性强。数理方法不能对错误的输入数据具备相容性,无法自我学习调整。当数理模型内存在自相关问题时,不易显示出来,而这通常会导致评估结果误差极大。但随着科学进步、计算机科技发展,信用评估方法逐步引入计算机人工智能方法,通过计算机编程可以处理大量复杂数据,并且模型的计算方法可以微调改进,用计算机不断调试,使得最终误差降到最低。下面将探讨信用评估中的人工智能方法。

三、信用评估中的人工智能方法

信用评估中引入人工智能方法,可以弥补数理方法在处理大量自相关的数据时的缺陷,并通过自我学习调整,改进数值直到误差降到最低。下面讨论神经网络模型和遗传算子法两种人工智能方法。

(一)神经网络模型

神经网络模型可以处理连续性和类别性的预测变量,使用范围较广,模型能够有效地捕捉数据中非线性、非可加性的数量关系,如果用数理模型处理会相当复杂,运算效率低下。神经网络模型也存在一些缺点,如建立模型时需要不断调试、改进、更新,成本过高。神经元的主体部分基本上是个黑箱方案,难以得到直观解释,中间步骤处于封闭状态,不利于样本数据的微调控制,从而不具备充分的抗震荡性和稳定性。

(二)遗传算子法

遗传算子法使用范围较广,可以用来解决多样的问题,在解决高维度目标函数上具备优势。但是遗传算子运用在信用评估中,在选取优良样本进行繁衍时,一定要倍加用心,否则可能引起持续的衰败。遗传算子法的计算量庞大,对计算机要求较高,而在最终得出的方案不一定是全局最优解,多是停留在局部最优的方案中。

(三)人工智能方法总结

人工智能方法的应用可以节省时间,提高运算效率,在考虑数据的非线性、非可加性时能够很好处理。人工智能方法的应用基础仍旧是数理方法,但在处理大量数据,并且数据相关性复杂,要多重层叠计算时,综合神经网络算法和遗传算子法等人工智能算法,会达到更加效果。人工智能方法相对于数理方法来说,最大的优点在于它处理非线性样本数据群组的自我学习功能强大。通过计算机的不断调试,算法可以整理出使得误差范围最小、与目标值最接近的模式函数。从大量的样本数据中找出复杂的变量关系,不仅仅是单纯线性或非线性函数可以表示的数量关系,这也是数理方法无法做到的地方。而且,数理方法大多数分析的是静态模型,很难建立依据样本变化的动态调整模式,人工智能方法通过多变量复杂预测模型的构建,能够做到不断调试、不断改进。

四、信用评估方法比较

各种信用评估方法无法总体上来评价各种方法的优劣,主要从经济解释力度、适用条件以及精确度和效率,这三个方面来分析比较上面的信用评估方法。

从经济解释力度来说,上述各种模型的力度不一,需要比较叙述。判别分析法得出的距离方程表示样本到两类总体的马氏距离,参数的意义是数理上的,没有经济意义。逻辑回归模型中,可以首先由逐步回归法选择出对因变量影响显著的变量。逻辑回归系数可以被解释为对应自变量一个单位的变化所导致的因变量的变化,这里的因变量不是常规变量,而是事件发生于不发生频数之间比的对数。在对变量选择方面,数学规划法和逻辑回归模型略有差别,但数学规划法运用简化指标得出最初结果的能力更优。

从适用条件来说,以上模型都可以用于处理连续变量和离散变量或其线性组合的问题,但应用各个模型的理论前提不尽相同。线性判别分析模型要求每一类的总体均值有显著差异,总体服从正态分布,且类间协方差矩阵相等。与判别分析模型相比,逻辑回归模型要求因变量为二分变量,自变量和因变量之间的关系为非线性的。不要求同分布假设,自变量之间也不必符合多元正态分布。神经网络均为非参数识别方法,对数据分布没有特别的要求,避免了传统技术对模型设定的困难。判别分析、逻辑回归法需要每个样本维数相同,无缺漏数据。神经网络法和遗传算子法能够处理有噪声或不完全的数据,具有泛化功能和很强的容错能力,加上其对数据分布要求不严格,因此,神经网络法和遗传算子法的适用性更为广泛。对于人工智能法中的BP 神经网络法和遗传算子法来说,它们相当于是“黑箱”技术,根据样本不断调整模型,提高预测准确率,一般用缺乏解释力,并且无法检验单个变量的重要性。在各种模型需要对指标变量进行简化时,则需要结合主成分分析方法来进行变量选择。

从精确度和效率的角度来比较分析这几种模型。可以发现神经网络模型等非线性方法由于存在过度拟合问题。判别分析法、逻辑回归和数学规划法的运算时间相差不多,均在较短的时间完成计算过程。神经网络需要计算误差值并将其反传到隐含层,调整各神经元的连接权值和阈值,直到误差在规定的范围内,因此训练次数多,计算量大,运算效率相对最低。逻辑回归模型对于确认样本进行预测时,误判率与训练样本最为接近,没有明显幅度的下降,在稳健性方面优于其他模型,有更强的扩展性和推广能力。

对于上面所分析的定量信用评估模型,需要注意的是,在实际评估操作中,不能完全忽视定性分析的必要性。信贷管理人员需要进一步提高自己的评估分析水平,定期更新专业知识学习和对前期信贷关系做出总结,尽量减少遭受损失的可能性。

五、信用评估方法展望

无论哪一种信用评估方法都不可能应用在所有数据的处理中,每个方法都有其适用条件及适用范围。信用评估最初采集来的数据类型主要是连续型变量、类别型变量、区间变量等。后面两种变量通常需要采取数据转换的方式变成连续型再使用各种方法带入模型中。每种模型都具有其客观性和科学性,但数据采集工作却存在一定的主观模糊性。这就需要将模糊数学的知识内容引入到数理统计方法和人工智能中去。设计出统一模式、步骤的信用评估模型变得极为重要。

[1] 李敏. 建立我国个人信用体系的研究[D].烟台:中国海洋大学,2006.

[2] 陈建. 信用评分模型技术与应用[M].北京:中国财经出版社,2005.

[3] 彭江. 基于模糊AHP 的个人信用评分模型研究[D].长沙:湖南大学,2009.

[4] 石庆焱,靳云汇. 个人信用评分的主要模型与方法综述[J].统计研究,2003,20(08).

[5] 邹琳. 我国中小企业信用风险评价方法研究[D].天津:天津财经大学,2009(07).

[6] 王宪全. 信用风险测量指标体系研究[J].商业研究,2007(07).

[7] 孟庆福. 信用风险管理[M].北京:经济科学出版社,2006.

[8] 汪冬华. 信用风险度量的理论模型及应用[M].上海:上海财经大学出版社,2007.

猜你喜欢
数理分析法信用
践行“德融数理” 打造“行知乐园”
中国德育(2022年12期)2022-08-22 06:17:24
异步机传统分析法之困难及其克服
防爆电机(2022年4期)2022-08-17 05:59:06
为食品安全加把“信用锁”
数理:多少人吃饭
孩子(2019年9期)2019-11-07 01:35:49
信用收缩是否结束
中国外汇(2019年9期)2019-07-13 05:46:30
最天然呆笔记 谁说数理就一定枯燥艰深?
基于时间重叠分析法的同车倒卡逃费探析
信用中国网
信用消费有多爽?
层次分析法在SWOT分析法中的应用