勾高顺,曹文胜
勾高顺,曹文胜
(五邑大学 数学与计算科学学院,广东 江门 529020)
秩为1的非紧对称空间分别有:实的、复的、四元数的双曲空间和Cayley双曲平面. 由于四元数乘法的不可交换性,四元素双曲空间的研究相对较少. 近来,Kim、Parker和曹文胜教授等国内外学者在四元数双曲空间的性质做出了研究[6-8].
证明 非负性和对称性显然成立. 因此只需证明三角不等式
成立.
我们发现如下等式:
利用此等式可得:
另外,给出Cygan球面的定义:
本节将给出主要结果以及其相关证明.
在证明定理1之前需要关注一条重要引理:
根据命题2结合(2)中的多个等式可得:
a)得证. 类似的,可如下证明b):
下面将对定理1给出证明:
[1] BEARDON N F. The geomettry of discrete groups [M]. New York: Springer-verlag, 1983.
[2] GOLDMAN W M. Complex hyperbolic geometry [M]. Oxford: Oxford University Press, 1999.
[3] MOSTOW G D. On a remarkable class of polyhedron in complex hyperbolic space [J]. Pacific Journal of Mathematics, 1980, 86(1): 171-276.
[4] PARKER J R. Notes on complex hyperbolic geometry [M]. Cambridge: Cambridge University Press, 2010.
[5] KAMIYA S. Generalized isometric spheres and fundamental domains for discrete subgroup of(1,;) [J]. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2003, 79(5): 105-109.
[6] CAO Wensheng, GONGOPADHYAY K. Algebraic characterization of the isometries in complex and quaternionic hyperbolic plane [J]. Geometriae Dedicata, 2012, 157: 23-39.
[7] CAO Wensheng, PARKER J R. Jorgensen's inequality and collars in-dimensional quaternionic hyperbolic space [J]. Quarterly J Math. 2011, 62: 523-543.
[8] KIM I, PARKER J R. Geometry of quaternionic hyperbolic manifolds [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2003, 135(2): 291-320.
[9] CHEN Xingshen, GREENBERY L. Hyperbolic spaces, contributions to analysis [M]. New York: Academic Press, 1974.
[责任编辑:韦 韬]
GOUGao-shun, CAOWen-sheng
(School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China)
1006-7302(2013)04-0010-05
O151.21.
A
2013-06-08
勾高顺(1987—),男,重庆酉阳人,在读硕士生,研究方向为复分析;曹文胜,教授,博士,硕士生导师,研究方向为复分析.