段 莉,林典岳,郑根建
(海南医学院附属医院口腔科,海南医学院口腔医学院,海南海口571101)
骨免疫学是研究骨骼系统和免疫系统相互作用的一门学科。免疫系统与骨骼系统两者间的相互作用参与调控骨改建的动态平衡过程。免疫细胞活性异常和破骨细胞过度活跃是引起炎症性牙槽骨吸收的病理基础。Notch信号通路通过调控骨髓、胸腺前体细胞的分化方向,在破骨细胞分化和免疫细胞发育中发挥着重要作用。本文在分析Notch信号通路组成和结构的基础上,综合最新进展,就Notch信号通路对骨免疫的调控机制及其在牙周炎发生中的可能作用作一综述。
Notch基因于1917年在果蝇(drosophila)体内发现,因其部分功能丧失导致果蝇翅缘缺口(notch)而得名。Notch信号途径是通过局部细胞间的相互作用以控制细胞命运的一种途径。从线虫到人类的几乎所有被研究过的生物中,Notch信号途径从结构到功能都是保守的,而且在发育过程中发挥着不可替代的调控作用[1]。Notch信号途径由Notch受体、配体以及下游信号转导分子和核内应答因子组成。
哺乳动物Notch受体包括4个同源体(Notch1-4),由胞外区域(the extracellular domain of Notch,NECD)、跨膜区域(transmembrane domain,TM)和胞内区域(the intracellular domain of Notch,NICD)组成。Notch配体共有5种,:Jagged家族(Jagged 1,Jagged 2)和Delta-like家族(Delta 1、Delta 3和Delta 4)两个家族。新合成的Notch前体需被蛋白质水解切割后才具有活性。Notch前体首先被高尔基体内的Furin-like蛋白酶进行S1位点切割为2个片段,再通过钙依赖性非共价键结合形成异二聚体,并被转运到细胞膜上,形成跨膜蛋白。当配体结合到 Notch胞外区(NECD),肿瘤坏死因子-α-转化酶(TNF-α converting enzyme,TACE)在Notch受体的S2位点进行切割,释放出胞外部分,留下与膜粘连的胞内部分(Notch-intra T M)。在跨膜区S3位点被早老蛋白(presenilin,PS)依赖的 γ-分泌酶(γ-secretase)切割释放Notch胞内片段(NICD,Notch的活性形式),NICD不经其他信号转导分子的作用而直接进入细胞核,与 DNA结合蛋白RBP-J相互作用。NICD不在核内时,RBP-J与其他抑制因子(Co-R)结合形成为转录抑制因子复合体。当胞内区和其他活化因子(Co-A)结合时,RBP-J能促进靶基因如HES和HERP的表达[2]。已有研究表明,Notch信号不但通过影响B和T淋巴细胞的发育参与调控免疫应答过程[3-4],而且还参与调控骨改建过程[5]。
骨免疫学是研究骨骼系统和免疫系统相互作用的一门学科[6]。骨形成和骨吸收之间的平衡调节着骨内环境的稳定,主要通过成骨细胞(Osteoblasts,OB)和破骨细胞(Osteclasts,OC)间的相互协调作用。尽管破骨细胞是骨吸收的主要功能细胞,但其本身又受到局部微环境调节[7]。免疫功能异常将影响骨内环境稳定,T细胞异常活化会导致破骨细胞过度活跃,从而使骨吸收速度远远超过骨形成速度,是牙周炎(periodontitis)发生的病理学基础[8-9]。此外,免疫系统异常亦与骨质疏松的发生有着紧密联系[10]。因此,免疫系统与骨骼系统两者间的相互作用受到密切关注。
破骨细胞来源于骨髓造血干细胞,是高度分化的多核巨细胞,直接参与骨吸收。一方面,破骨细胞过度活跃是类风湿性关节炎(rheumatoid arthritis,RA)和牙周炎发生的病理学基础[9,11];另一方面,破骨细胞活性低下又可引发骨质硬化症(osteopetrosis)[12]。因此,如何调节破骨细胞活性是骨免疫研究领域的热点之一。免疫细胞、骨髓微环境中的成骨细胞和骨髓基质细胞均参与调控破骨细胞的分化及其骨吸收功能[13-14]。核因子-κB受体活化因子(receptor activator of NF-κB,RANK)及其配体 RANKL和诱饵受体骨保护素(Osteoprotegerin,OPG)是破骨细胞发育和功能活化的关键调节因子[15]。RANKL-RANK信号传导可以激活破骨细胞发育所需的一系列下游信号途径,但OPG能竞争性地与 RANKL结合,阻断 RANK与RANKL间的相互作用,从而抑制破骨细胞的形成和活化[16]。
B细胞和T细胞是适应性免疫应答(adaptive immune system)中参与识别和抵御外来病原物的主要成员。有研究发现,缺乏B细胞的老鼠会发生骨质疏松,提示免疫细胞参与维持基础水平的骨代谢平衡[17];成熟B细胞分泌的OPG量占整个骨髓来源的50%以上,因此对生理状态下的破骨细胞活性起到明显的抑制作用[18]。从牙周病变部位分离培养的包括T细胞和B细胞在内的单核细胞能诱导体外的破骨细胞分化[19]。上述研究结果提示,T细胞和B细胞主要是通过调控RANKL的表达水平,从而影响破骨细胞分化及其骨吸收能力。
T细胞对破骨细胞的诱导效应取决于T细胞分泌的促进和抑制因子。一方面,活化的T细胞所产生的RANKL通过与破骨前体细胞的RANK直接结合,而诱导其向破骨细胞分化[20-21]。另一方面,由T细胞分泌的γ-干扰素(IFN-γ)能在极其微量的浓度时通过激活泛素/蛋白酶(ubiquitin/ proteasome)降解肿瘤坏死因子受体相关因子-6 (tumor necrosis factor receptor-associated factor-6,TRAF-6),从而抑制RANKL诱导的破骨细胞分化效应[22-23]。此外,CD4+辅助性T细胞(T helper,Th)按其所产生细胞因子的不同分为Th 1和Th 2,Th 1主要产生IFN-γ,而Th 2主要产生白介素-4, 5和10(interleukin,IL)[24]。除上述IFN-γ能抑制RANKL诱导的破骨细胞分化外,IL-10也能通过降低活化T细胞核因子(nuclear factor of activated T cells,NFAT-c1)的表达水平及核转位能力而抑制破骨细胞分化[25-26]。在上述负性调控因子存在的关节炎症病变部位,活化的CD4+T细胞是如何诱导破骨细胞分化的呢?有学者推测,可能存在一类非常微量但对病理性骨吸收起着极其重要作用的Th细胞,称为破骨细胞源性辅助T细胞(osteoclastogenic Th,ThOc)[27]。目前,已经明确 ThOc是一类能产生IL-17的CD4+T细胞,其中Th 1和Th 2具有抑制破骨细胞分化的效应[28]。进一步研究表明,IL-17A对生理性骨改建过程没有影响,但在炎症状态下,能通过上调破骨前体细胞RANK表达水平,提高RANK对RANKL的敏感性,促进破骨细胞分化及其骨吸收,从而在病理性骨改建过程中发挥重要作用[29]。
目前有关破骨细胞对免疫细胞的调控效应尚不明确。破骨细胞作为抗原呈递细胞(antigen-presenting cells,APCs)为活化T细胞。与树突状细胞(dendritic cells,DCs)类似,破骨细胞主要表达组织相容性抗原Ⅰ和Ⅱ(major histocompatibility complex,MHC)、CD80、CD86和CD40;并能吸收摄取可溶性抗原。同时,破骨细胞还能分泌IL-10、IL-6、转化生长因子-β (transforming growth factor-beta,TGF-β)和肿瘤坏死因子-α(tumor necrosis factor-alpha,TNF-α),并以MHC受限的方式呈递外来抗原而活化CD4+和CD8+同种异体反应性 T细胞 (alloreactive Tcells)[30]。
定向敲除小鼠成骨细胞的早老素-1(presenilin-1)和早老素-2,可导致OPG水平降低、破骨细胞活性增高从而降低小鼠的骨质密度[31],提示Notch信号可通过降低OPG的表达水平,以非细胞自主方式(a non-cell autonomous manner)调控破骨细胞的形成。体外实验表明,Notch 1信号和Notch 2信号亦均以细胞自主方式(a cell autonomous manner)调控破骨细胞的分化过程,抑制破骨前体细胞Notch 1信号能促进其向破骨细胞分化[32]。利用γ-分泌酶抑制剂阻断 Notch信号或通过shRNA干扰阻断Notch 2信号均能抑制RANKL诱导的破骨细胞分化过程;而活化Notch 2信号则能促进RANKL诱导的破骨细胞分化过程[33]。因此,两种细胞方式(自主或非自主)均参与Notch信号对破骨细胞分化的调控过程。由于破骨前体细胞主要表达Notch 2受体[34],提示Notch信号的综合效应可能是一种正向调控破骨细胞分化过程。
成熟的外周B细胞主要包括滤泡B细胞(Follicular B)和边缘带B细胞(marginal zone B,MZB)两个亚类。MZB细胞主要启动体液免疫以清除外来抗原[34]。初始B细胞(naive B cell)主要表达Notch 2受体35-36],Notch 2或Dll 1基因敲除鼠体内的 MZB细胞数量明显减少[35,37],提示Notch 2信号途径在MZB细胞的发育中起决定作用。敲除 Notch信号通路的关键核转录因子RBP-J[38]或MAML 1(mastermind-like 1)[39]基因后,小鼠亦不能产生MZB细胞,进一步表明Notch信号途径在MZB细胞发育中的关键作用。交互实验(reciprocal experiment)结果显示,敲除 MINT (Notch/RBP-J信号通路的抑制因子)基因后,小鼠MZB细胞数量剧增,同时伴随滤泡B细胞数量下降[40]。上述基因功能丧失实验表明,Notch 2与Dll 1的相互作用参与调控MZB的发育过程。
Th 1细胞主要分泌IFN-γ,参与细胞免疫和迟发型超敏性炎症的形成[41]。DC细胞通过表达Notch的不同配体与T细胞发生互相作用而影响Th向Th 1或Th2分化;其中Delta诱导Th向Th1分化,而Jagged诱导其向Th 2分化[42]。即Delta配体高表达时促进Th向Th 1分化,而被抑制时则向Th 2细胞分化[43]。此外,使用γ-分泌酶抑制剂能阻断Th 1发育过程,表明Notch信号对Th 1细胞发育具有重要的调控作用[44]。转录因子T-bet(Notch靶基因之一)参与Dll诱导Th 1细胞分化过程,但不参与Dll对Th 2细胞分化的抑制过程[45]。阻断Dll 4-Notch途径后,CD4+Foxp3+调节性T细胞(Treg)数量增加,Th 2/Th 1–Th 17比值升高,能减轻实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)的临床症状和中枢系统炎症反应[46]。
目前,有关参与Dll诱导Th 1极化的Notch受体尚不清楚。CD4+T细胞主要表达 Notch 1和 Notch 3受体[43],过表达N3-ICD激活Notch 3信号能促进Th向Th 1细胞分化,同时提高IFN-γ表达水平;但过表达N1-ICD激活的Notch 1信号通路并不影响IFN-γ的表达。交互试验发现,即使Delta 1-Fc存在,一旦失活Notch 3受体阻断Notch 3信号通路,Th1细胞分化过程仍然受阻,表明Notch 3-Delta的相互作用在Th 1极化中发挥重要作用[43]。以上实验结果提示,通过阻断Notch 3信号途径能抑制Th 1细胞免疫反应[47]。另一方面,有证据表明Notch经典信号途径(通过 RBP-J或MAML)并不参与Delta在Th 1细胞分化的调控过程[48]。
APCs表达Jagged配体诱导体外Th向Th 2细胞分化[43];但Jagged2配体不足以诱导体内Th向Th 2细胞分化[48];甚至有研究表明Jagged 2不是体内Th 2细胞分化的必需条件[49]。在气道高反应性(airway hyperresponsiveness)模型中,DCs表面Jagged1配体通过诱导IL-4参与调控Th细胞的起始分化过程[50]。上述研究结果提示Jagged 1配体参与Th 2细胞免疫反应。
经Toll受体(toll-like receptors,TLR)刺激后的DC细胞表达Delta 1和Delta 4配体,抑制辅助性T细胞向Th 2发育。Gata 3是Notch信号抑制Th 1细胞发育,诱导Th 2细胞发育过程中的关键因子[51],当阻断IL-4对Gata 3的诱导作用时,在降低DCs细胞表面Delta配体表达量的情况下,Th 2细胞发育过程仍然被抑制[52]。抑制EAE实验动物体内的Dll配体后,能增强髓磷脂-特异性(myelin-specific)Th 2/Treg免疫反应,同时抑制Th 1/Th 17细胞活性[46]。敲除Notch信号通路的其他组分(如MAML或RBP-J)能抑制小鼠体内Th 2细胞免疫反应[50,53]。
牙周炎(periodontitis)是由牙菌斑生物膜的细菌及其产物引起的结缔组织附着丧失和牙槽骨破坏的一类疾病。细菌感染宿主激发T细胞介导的间接免疫反应是牙周病进程的主要环节[54]。Th 17细胞产生IL-17是引发牙周病发生的主要致病因子[55],通过牙周基础治疗,IL-17和IFN-γ水平降低,而IL-4水平升高,牙周局部组织炎症明显减轻,提示在牙周病的发展和转归中,Th 2主要起保护作用,而Th 17细胞通过破坏牙周组织局部免疫机制起损害作用。
多种因子参与调控Th 17细胞分化[55-58]。在小鼠和人类Th 17分化过程中,Notch 1信号被活化[59],阻断Notch信号能明显降低Th 17相关炎性因子水平,提示Notch信号在Th17分化中起关键作用。利用染色质免疫沉淀方法研究发现,Th 17细胞中的IL-17和维甲酸相关孤儿受体γt(retinoic acid-related orphan receptor γt,RORγt)受到Notch信号的直接转录调控;阻断Notch信号能降低IL-17表达量,延缓EAE动物体内Th17激发的免疫疾病的进程。进一步表明Notch信号在Th 17细胞分化中的重要作用。
另一方面,牙周膜细胞表达Notch信号配体Jagged 1,体外实验发现,甲状旁腺素相关肽(parathyroid hormone-related peptide,PTHrP)能刺激牙周膜细胞高表达Jagged 1,从而参与调控RANKL诱导的破骨细胞形成分化过程[60];而骨形成因子能提高牙周膜细胞Notch信号配体Dll 1的表达水平[61]。Jagged 1通过与Notch 1受体结合抑制破骨细胞分化;而Dll 1通过与Notch 2受体结合促进破骨细胞分化,并且在破骨前体细胞向破骨细胞分化过程中,相对于Jagged/Notch 1的负向调控作用,Dll 1/Notch 2间的正向调控效应为主导作用[62]。上述研究结果提示Notch信号可能成为治疗牙周炎的新靶点。
尽管Notch信号非Th1细胞分化的必须通路,但Notch信号对Th 2、Th 17、MZB细胞和破骨细胞的分化起到重要的正向调控作用。在破骨细胞分化过程中,Th 1和Th 2细胞为负向调控因子,而Th 17为正向调控因子。抑制Notch信号通路不但可直接抑制破骨细胞分化,并且可通过抑制Th 17细胞发育间接抑制破骨细胞分化。因此,Notch信号通路有望成为临床治疗牙周炎新的靶点。
[1] Souilhol C,Cormier S,Tanigaki K,et al.RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development[J].Mol Cell Biol.2006,26(13):4769-4774.
[2] Radtke F,Fasnacht N,Macdonald HR.Notch signaling in the immune system[J].Immunity,2010,32(1):14-27.
[3] Billiard F,Kirshner JR,Tait M,et al.Ongoing Dll4-Notch sig-naling is required for T-cell homeostasis in the adult thymus[J].Eur J Immunol,2011,41(8):2207-2216.
[4] Jin G,Zhang F,Chan KM,et al.MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development[J].EMBO J,2011,30(11):2281-2293.
[5] Zanotti S,Canalis E.Notch regulation of bone development and remodeling and related skeletal disorders[J].Calcif Tissue Int,2012,90(2):69-75.
[6] Arron JR,Choi Y.Bone versus immune system[J].Nature,2000,408(6812):535-536.
[7] Takayanagi H.Interaction between the immune system and bone metabolism:an emerging field of osteoimmunology[J].Proc Japan Academy Series B,2007,83:136-142.
[8] Takayanagi H.Osteoimmunological insight into bone damage in rheumatoid arthritis[J].Mod Rheumatol,2005,15(4):225-231.
[9] Cardoso CR,Garlet GP,Crippa GE,et al.Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease[J].Oral Microbiol Immunol,2009,24 (1):1–6.
[10] Clowes JA,Riggs BL,Khosla S.The role of the immune system in the pathophysiology of osteoporosis[J].Immunol Rev,2005,208:207-227.
[11] Sato K,Takayanagi H.Osteoclasts,rheumatoid arthritis,and osteoimmunology[J].Curr Opin Rheumatol,2006,18(4): 419-426.
[12] Teti A,Migliaccio S,Taranta A,et al.Mechanisms of osteoclast dysfunction in human osteopetrosis:abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures[J].J Bone Miner Res,1999,14(12):2107-2117.
[13] Reddy SV,Roodman GD.Control of osteoclast differentiation[J].Crit Rev Eukaryot Gene Expr,1998,8(1):1-17.
[14] Okamoto K,Takayanagi H.Osteoclasts in arthritis and Th17 cell development[J].Int Immunopharmacol,2011,11(5): 543-548.
[15] Khosla S.Minireview:the OPG/RANKL/RANK system[J].Endocrinology,2001,142(12):5050-5055.
[16] Liu C,Walter TS,Huang P,et al.Structural and functional insights of RANKL-RANK interaction and signaling[J].J Immunol,2010,184(12):6910-6919.
[17] Li Y,Toraldo G,Li A,et al.B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo[J].Blood,2007,109(9):3839-3848.
[18] Raggatt LJ,Partridge NC.Cellular and molecular mechanisms of bone remodeling[J].J Biol Chem,2010,285(33):25103-25108.
[19] Harada Y,Taubman MA,Eastcott JW,et al.Generation of B cells specific for Actinobacillus actinomycetemcomitans[J].J Dent Res,1990,69(Spec.Issue):143(Abstr.279)
[20] Kong YY,Feige U,Sarosi I,et al.Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand[J].Nature,1999,402(6759):304-309.
[21] Horwood NJ,Kartsogiannis V,Quinn JM,et al.Activated T lymphocytes support osteoclast formation in vitro[J].Biochem Biophys Res Commun,1999,265(1):144-150.
[22] Arron JR,Choi Y.Bone versus immune system[J].Nature,2000,408(6812):535-536.
[23] Takayanagi H,Ogasawara K,Hida S,et al.T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J].Nature,2000,408(6812):600-605.
[24] Zhu J,Paul WE.Heterogeneity and plasticity of T helper cells[J].Cell Res,2010,20(1):4-12.
[25] Hong MH,Williams H,Jin CH,et al.The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins[J].J Bone Miner Res,2000,15 (5):911-918.
[26] Mohamed SG,Sugiyama E,Shinoda K,et al.Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells[J].Bone,2007,41(4):592-602.
[27] Takayanagi H.Osteoimmunology:shared mechanisms and crosstalk between the immune and bone systems[J].Nat Rev Immunol,2007,7(4):292-304.
[28] Sato K,Suematsu A,Okamoto K,et al.Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J].J Exp Med,2006,203(12):2673-2682.
[29] Adamopoulos IE,Chao CC,Geissler R,et al.Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors[J].Arthritis Res Ther,2010,12(1):R29.
[30] Li H,Hong S,Qian J,et al.Cross talk between the bone and immune systems:osteoclasts function as antigen-presenting cells and activate CD4+and CD8+T cells[J].Blood,2010,116 (2):210-217.
[31] Engin F,Yao Z,Yang T,et al.Dimorphic effects of Notch signaling in bone homeostasis[J].Nat Med,2008,14(3):299-305.
[32] Bai S,Kopan R,Zou W,et al.NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells[J].J Biol Chem,2008,283(10):6509-6518.
[33] Pillai S,Cariappa A,Moran ST.Marginal zone B cells[J].Annu Rev Immunol,2005,23:161-196.
[34] Fukushima H,Nakao A,Okamoto F,et al.The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis[J].Mol Cell Biol,2008,28(20):6402-6412.
[35] Saito T,Chiba S,Ichikawa M,et al.Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development[J].Immunity,2003,18(5):675-685.
[36] Moriyama Y,Sekine C,Koyanagi A,et al.Delta-like 1 is es-sential for the maintenance of marginal zone B cells in normal mice but not in autoimmune mice[J].Int Immunol,2008,20 (6):763-773.
[37] Hozumi K,Negishi N,Suzuki D,et al.Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo[J].Nat Immunol,2004,5(6):638-644.
[38] Tanigaki K,Han H,Yamamoto N,et al.Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells[J].Nat Immunol,2002,3(5):443-450.
[39] Oyama T,Harigaya K,Muradil A,et al.Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo[J].Proc Natl Acad Sci USA,2007,104(23): 9764-9769.
[40] Kuroda K,Han H,Tani S,et al.Regulation of marginal zone B cell development by MINT,a suppressor of Notch/RBP-J signaling pathway[J].Immunity,2003,18(2):301-312.
[41] Rutz S,Janke M,Kassner N,et al.Notch regulates IL-10 production by T helper 1 cells[J].Proc Natl Acad Sci USA,2008,105(9):3497-3502.
[42] Amsen D,Blander JM,Lee GR,et al.Instruction of distinct CD4 T helper cell fates by different notch ligands on antigenpresenting cells[J].Cell,2004,117(4):515-526.
[43] Maekawa Y,Tsukumo S,Chiba S,et al.Delta1-Notch3 interactions bias the functional differentiation of activated CD4+T cells[J].Immunity,2003,19(4):549-559.
[44] Minter LM,Turley DM,Das P,et al.Inhibitors of gammasecretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21[J].Nat Immunol,2005,6(7):680-688.
[45] Krawczyk CM,Sun J,Pearce EJ.Th2 differentiation is unaffected by Jagged2 expression on dendritic cells[J].J Immunol,2008,180(12):7931-7937.
[46] Bassil R,Zhu B,Lahoud Y,et al.Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development[J].J Immunol,2011,187(5):2322-2328.
[47] Jurynczyk M,Jurewicz A,Raine CS,et al.Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis[J].J Immunol,2008,180(4):2634-2640.
[48] Tu L,Fang TC,Artis D,et al.Notch signaling is an important regulator of type 2 immunity[J].J Exp Med,2005,202(8): 1037-1042.
[49] Worsley AG,LeibundGut-Landmann S,Slack E,et al.Dendritic cell expression of the Notch ligand jagged2 is not essential for Th2 response induction in vivo[J].Eur J Immunol,2008, 38(4):1043-1049.
[50] Okamoto M,Matsuda H,Joetham A,et al.Jagged1 on dendritic cells and Notch on CD4+T cells initiate lung allergic responsiveness by inducing IL-4 production[J].J Immunol,2009,183(5):2995-3003.
[51] Amsen D,Antov A,Jankovic D,et al.Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch[J].Immunity,2007,27(1):89-99.
[52] Sun J,Krawczyk CJ,Pearce EJ.Suppression of Th2 cell development by Notch ligands Delta1 and Delta4[J].J Immunol,2008,180(3):1655-1661.
[53] Amsen D,Antov A,Jankovic D,et al.Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch[J].Immunity,2007,27(1):89–99.
[54] Yoshie H,Taubman MA,Olson CL,et al.Periodontal bone loss and immune characteristics after adoptive transfer of Actinobacillus-sensitized T cells to rats[J].J Periodontal Res,1987,22 (6):499-505.
[55] Zhao L,Zhou Y,Xu Y,et al.Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients[J].J Clin Periodontol,2011,38(6):509-516.
[56] Mukherjee S,Schaller MA,Neupane R,et al.Regulation of T cell activation by Notch ligand,DLL4,promotes IL-17 production and Rorc activation[J].J Immunol,2009,182(12): 7381-7388.
[57] Peters M,Dudziak K,Stiehm M,et al.T-cell polarization depends on concentration of the danger signal used to activate dendritic cells[J].Immunol Cell Biol,2010,88(5):537-544.
[58] Akimzhanov AM,Yang XO,Dong C.Chromatin remodeling of interleukin-17(IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation[J].J Biol Chem,2007,282(9):5969-5972.
[59] Keerthivasan S,Suleiman R,Lawlor R,et al.Notch signaling regulates mouse and human Th17 differentiation[J].J Immunol,2011,187(2):692-701.
[60] Nakao A,Kajiya H,Fukushima H,et al.PTHrP induces Notch signaling in periodontal ligament cells[J].J Dent Res,2009,88 (6):551-556.
[61] Liu L,Ling J,Wei X,et al.Stem cell regulatory gene expression in human adult dental pulp periodontal ligament cells undergoing odontogenic/osteogenic differentiation[J].J Endod,2009,35(10):1368-1376.
[62] Sekine C,Koyanagi A,Koyama N,et al.Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes[J].Arthritis Res Ther,2012,14(2):45.