海参生物活性研究进展

2012-11-23 16:23张梅秀王锡昌
天然产物研究与开发 2012年8期
关键词:刺参海参皂苷

张梅秀,王锡昌,刘 源

上海海洋大学食品学院,上海201306

海参生物活性研究进展

张梅秀,王锡昌,刘 源*

上海海洋大学食品学院,上海201306

海参是重要的海洋食物和药物资源,含有多种生物活性成分,如多糖、皂苷、多肽及蛋白质和脂类等其他活性成分,具有增强免疫力、抗凝血、镇痛、抗肿瘤、抗真菌、抗病毒、抗衰老和抗疲劳等生理功能。本文简要介绍了我国海参资源的分布情况,综述了国内外对海参生物活性物质组成及其药理作用研究的新进展。旨在为科学工作者对海参展开细胞和分子水平上的研究、寻找新型的海洋高效药物和功能性食品的开发提供参考,同时为我国丰富的海参资源的开发利用提供新思路。

海参;资源分布;生物活性;药理作用;研究进展

海参(Sea cucumber)隶属无脊椎动物中最高等的棘皮动物门(Echinodermata)、海参纲(Holothuroidea),是海洋重要的食物和药物资源。海参种类比较丰富,目前已知全世界上约有1100多种,我国约有500多种,全世界可食用海参有40多种,我国有20多种[1]。

近十年来,国内外关于海参的生物活性成分及其药理作用等方面的研究非常活跃,已经相继从几十种海参中分离获得了多种功能性化学物质,包括多糖[2]、三萜皂苷[3]、多肽及蛋白质[4]、脂类(包括脂肪酸[5]、神经节苷酯[6-8]、脑苷脂[9]等)、凝集素、神经肽和糖肽等。海参中多种生物活性成分及其药理作用的发现表明海参是世界上少有的高蛋白、低脂肪、低糖、无胆固醇的营养保健食品,而且其药理活性十分广泛,有可能成为治疗当前威胁人类健康主要疾病如癌症、循环系统疾病和艾滋病等的新型药物。为科学工作者对海参展开细胞和分子水平上的研究、寻找新型的海洋高效药物和功能性食品的开发提供参考,同时为我国丰富海参资源的开发利用提供新的思路。

1 我国海参资源的分布情况

目前已知我国海参主要分布在温带区和热带区,温带区主要在黄海、渤海海域,主要经济品种是刺参,也是我国最为知名的海参种类;热带区主要在两广和海南沿海,主要经济品种有梅花参等,其中西沙群岛、南沙群岛和海南岛是我国热带海参的主要产地。我国可食用海参有20多种,隶属于3个目、4个科[10],主要有仿刺参、梅花参、绿刺参和花刺参,下表为我国可食用海参的类群:

表1 我国可食用海参的类群Table 1 The types of edible sea cucumber in China

2 海参生物活性成分及其药理作用

2.1 多糖

2.1.1 多糖的组成

海参主要的食用和药用部位是体壁,而多糖是海参体壁的重要成分。国内外有关研究表明,海参体壁多糖主要分为两类,一类为海参糖胺聚糖(Glycosaminoglycan,GAG)即酸性粘多糖(Holothurian acid glycosaminoglycan,HG),另一种为海参岩藻多糖(Holothurian fucan,HF)。研究表明刺参[11]、梅花参[12]、黑乳海参[13]和玉足海参[14]多糖的结构特异,且各不相同,均为海参所特有的多糖,生物活性非常相似,酸性粘多糖和岩藻多糖的硫酸酯基的含量也非常高。经进一步研究发现,这两类多糖属于硫酸软骨素类多糖,硫酸软骨素的岩藻糖支链由2个岩藻糖由1→3糖苷键连接,岩藻糖支链和葡萄糖醛酸的比例为1∶1,也就是说大约20%支链在多聚物主链的糖醛酸上,余下的支链O→4或O→6糖苷键连在N-乙酰氨基半乳糖上[15]。下表列举了5种海参多糖的化学成分含量[16]:

表2 5种海参多糖的化学成分含量(g·100g-1)Table 2 Chemical component of polysaccharides from five kinds of sea cucumber(g·100g-1)

从表2可以看出,各种海参多糖的总糖含量在40.37% ~62.11%之间变动,硫酸根含量在19.54%~29.95%之间波动,糖醛酸含量在9.85%~12.67%之间变化,差异并不明显,而各种海参多糖的氨基糖含量差别却较大。

2.1.2 多糖生物活性

2.1.2.1 增强免疫力

周湘盈等[17]研究表明刺参冻干粉剂量组0.4、0.8和1.6 g/(kg*d)对小鼠肉瘤S180的抑瘤率分别为15.5%,21.1%和34.8%,且随着剂量的增加抑瘤率增加。随着刺参冻干粉剂量逐渐增高,白细胞介素-2(IL-2)含量增多,T细胞增殖,激活了多种免疫细胞,促进了细胞因子的产生,从而提高了机体的兔疫功能。这是因为刺参冻干粉中的刺参酸性粘多糖对IL-2具有一定的诱生作用,也有可能是刺参酸性粘多糖能使白细胞悬浮物中的E花环数量增加,作用于无活性细胞亚群,致使活性的T细胞增加,红细胞-抗体-补体复合物与B淋巴细胞混合形成的EAC玫瑰花环和膜免疫球蛋白(SmIg)的表达减少,从而提高了机体的免疫功能。海参酸性粘多糖是一种作用较强的免疫促进剂,可用于肿瘤病人的辅助治疗。

2.1.2.2 抑制肿瘤

海参多糖的抗肿瘤活性与其提高免疫功能的作用是息息相关的。一般认为抗肿瘤免疫主要是细胞免疫,单核-巨噬细胞系统的吞噬活性是机体免疫功能的重要指标之一,巨噬细胞是抗肿瘤的主要效应细胞。高翔等[18]抗肿瘤实验表明,海参硫酸粘多糖对黑色素瘤B16作用72 h时IC30为0.13 mg/mL,具有显著的抗肿瘤活性。

2.1.2.3 抗凝血、促进纤溶作用和抗血栓

海参糖胺聚糖(GAG)和岩藻糖硫酸软骨素(Fucosylated chondroitinsulfate,FCS)都有类似于肝素但又不同于肝素的抗凝血、抗血栓的作用[19]。研究表明GAG不仅有抗凝血酶作用,还有促进纤维蛋白溶酶原活化[20],从而具有促进纤溶的作用。但GAG有明显的抑制血小板解聚作用,由于它使血小板聚集性增高,产生血小板自发性聚集,在血循环中的血小板聚集体不能通过脏器和组织中的毛细血管而被扣下出现血小板减少[2]。GAG的聚集血小板作用跟其自身的分子量大小有关,Wu Mingyi等[21,22]研究表明通过酶解GAG,减小GAG的分子量,不仅可以保留其抗凝血活性,而且可以减弱血小板的聚集作用,同时减少出血的风险性。FCS在一定剂量下抗凝效果比肝素更强烈,可诱导血管内皮细胞膜GAG活性的改变[23],从而改变血浆抗凝活性。Fonseca RJ等[24]人研究表明岩藻糖硫酸软骨素和岩藻聚糖硫酸酯结构中的2,4-二硫酸化岩藻糖单位抗凝血活性必需的结构单位,同时多糖链上的2,4-二硫酸化岩藻糖单位的位置决定了其是具有凝血还是出血作用。

Li Z等[2,25,26]研究表明 GAG通过调节活化血小板粘附分子GPⅠb,GPⅡb/IIIa复合物的表达,降低活化人脐静脉内皮细胞(HUVECs)von Willebrand因子(vWF)和纤溶酶原激活剂抑制物-1(PAI-1)抗原表达及其mRNA转录,抑制血小板一内皮细胞粘附反应,从而减少血栓形成。GAG和FCS抗凝活性都呈自体血液回收(HC-I)依赖性,故GAG有可能用于治疗德氮吡格中间体1-氨甲基-1,2,3,4-四氢异喹啉(ATIQ)减少而需抗凝治疗的血栓性疾病,成为新型的抗凝药物。

2.1.2.4 抗病毒和抗真菌

在组织培养和动物脑内接种32或320TC LD50的单纯疱疹病毒(HSV)液,然后腹腔注射GAG,以小鼠死亡率和平均存活日期判断药物的抗病毒活性,同时也作了兔眼HSV角膜炎的治疗。结果表明,当GAG与不同稀释度的病毒液(10-4~10-6)混合培养时,GAG抑制HSV的最低有效浓度为10 μg/ml,效果大于阿糖腺甘(25 μg/mL),GAG有明显的抗HSV作用,但对小鼠HSV脑炎和兔眼HSV角膜炎并无疗效[27]。

2.1.2.5 对神经的作用

Zhang Y等[28,29]将刺参中提取的硫酸多糖和成纤维细胞生长因子混合一起作用于大鼠的神经胚胎肝细胞,发现神经胚胎肝细胞的增值分化要比单独加成纤维细胞生长因子的增值分化效率要高很多。原因可能是刺参硫酸多糖可以减缓细胞的死亡,延长细胞寿命,促进神经元的形成。同时刺参多糖对谷氨酸所致的PC12细胞神经毒性损伤亦有保护作用[30]。故而刺参多糖可以作为促进神经肝细胞增值分化的辅助药物,用于预防中枢神经元的退行性病变和治疗神经性疾病。

2.2 皂苷

海参皂苷是一类三萜皂苷,三萜皂苷在动物体内非常少见,动物中主要存在于海参和少部分海绵体内。2000年以来,Silchenko AS[31,32]等人已至少从21种海参中分离并鉴定了59种新的海参烷型海参皂苷,且多数为羊毛甾烷型三萜皂苷。海参皂苷由苷元和寡糖基两部分组成,寡糖链通过β-O-糖苷键和苷元的C-3相连。寡糖链是由4~6个单糖组成的直链[33]或支链。海参苷元均为羊毛甾烷的衍生物,通常含有5个角甲基,20位上连接有侧链;绝大部分属于海参烷型,即含有18(20)内酯结构[34],偶有18(16)内酯环或无内酯环结构者,称为非海参烷型(Nonholostane)。海参皂苷结构的多样性,导致其具有多种多样的生物活性作用[3,35]。下表为新近发现的海参皂苷:

表3 近年以来新发现的海参皂苷及其药理活性Table 3 The recently discovered sea cucumber triterpene glycosides and their pharmacological activity

Thelenataananas Bivittoside D CCR5受体阻断 [38]Pseudocolo chirus Violaceuside I and A 细胞毒性、抗真菌 [39,40]Hemioedema spectabilis Hemoiedemoside A 抗真菌 [41]Holothuria fuscocinerea Fuscocineroside C 细胞毒性、抗真菌 [42]Mensamaria intercedens Intercedenside A and C 细胞毒性、抗肿瘤 [43,44]Staurocucumis liouvillei Liouvillosides A1,A2,A3,B1,and B2 抗病毒 [45]Actinopyga lecanora Lecanorosides A and B 细胞毒性 [46]Actinopyga lecanora Holothurin B 抗真菌 [47]Pentacta quadrangularis Pentactasides B and C 细胞毒性 [48]Bohadschia marmorata Impatienside A,Bivittoside D 抗真菌 [49]Holothuria axiloga Axilogoside A 抗真菌活性 [50]Holothuria hilla Lesson Hillasides A and B 细胞毒性 [51]Pseudocolochirus violaceus Violaceusides A and B 细胞毒性 [40,52]Holothuria nobilis Nobilisides A,B and C 细胞毒性 [53]Holothuria leucospilota Leucospilotaside B, 细胞毒性 [54]Pentacta quadrangularis PentactasidesⅠ,Ⅱ,Ⅲ 细胞毒性 [55]Cucumaria japonica Cumaside 抗肿瘤 [56]Holothuria scabra Scabraside A and B,EchinosideA,Holothurin A1 抗真菌,细胞毒性 [57,58]Cucumaria frondosa Frondoside A 免疫调节,抗胰腺癌 [59,60]

海参皂苷有具有一系列活性如溶血性、体外细胞毒性、抗肿瘤、抗真菌、降血脂[61]和杀虫[62]作用等。在38个新皂昔中,进行过活性研究的化合物大多具有这些活性(见表3)。大多数海参皂苷都具有较强的溶血活性,其溶血活性与皂苷糖链上硫酸基的位置,末端单糖结构中是否存在3-O-CH3基团以及苷元结构的特性有非常重要的关系。如海参三萜皂苷成分中NobA会立即转移到红细胞膜上,与红细胞膜中的胆固醇结合,引起红细胞穿孔而溶血[63]。

Muniain C等[64]从海参(Psolus patagonicus)中提取得到的一种主要三萜皂苷Patagonicoside A能够抑制叶霉病菌,尖孢镰刀菌和念珠菌的生长,显示出较强的抗真菌活性,同时实验结果表明Patagonicoside A对盐水虾卤虫有较高的致死率。Yuan W H等[50]也从黑乳海参中提取出来的一种新型三萜皂苷Axilogoside A,经试验表明其具有相当强的抗真菌活性(4 μg/mL-1≤MIC80≤16 μg/mL-1)。这跟大多数海参皂苷都具有较强的溶血活性有关即海参皂苷能与生物膜上甾醇分子结合形成复合物,在膜上形成单一离子通道和大的水孔,导致生物膜溶解[34]。王静凤等[65]研究表明对于氧化型低密度脂蛋白(Ox-LDL)氧化损伤的血管内皮细胞,日本刺参皂苷有能显著提高细胞增殖活性(P<0.01),抑制胞内丙二醛(MDA)含量(P<0.01),有效保护氧化损伤的血管内皮细胞,但对细胞一氧化氮合成限速酶(NOS)的活性和NO释放量无显著影响,这对动脉粥样硬化(Atherosclerosis,AS)的防治具有重要意义。

海参皂甙中有一些是具有肿瘤细胞毒性的化合物,存在于海参的体壁、内脏和腺体中,能抑制肿瘤细胞的生长与转移,能起到有效防癌、抗癌作用[66,67]。Silchenko A S等[68]从海参(Cucumaria okhotensis)提取出的三种新的三萜皂苷Okhotosides B1 (1),B2(2)和B3(3)和一种已知皂苷Frondoside A (4)(如图1)对HeLa宫颈癌细胞都显示出不同程度细胞毒性(2.1 mg/mL≤IC50≤4.5 mg/mL)作用,其中Frondoside A(4)的细胞毒性最强。某些海参皂苷还具有镇痛解痉作用,原因是海参皂苷可能特异性作用于神经受体或离子通道,从而影响与受体有关的一系列细胞调控活动,阻断神经传导起到镇痛解痉作用。

图1 化合物okhotosides B1(1)、B2(2)、B3(3)和frondoside A(4)Fig.1 Okhotosides B1(1),B2(2),B3(3)and frondoside A(4)

2.3 海参肽

海参干燥体壁的有机成分中蛋白质含量接近90%,含有18种氨基酸,不仅氨基酸的构成比例较好,其中必需氨基酸的比例很高,包括人体必需的7种氨基酸,而且海参中甘氨酸、精氨酸和谷氨酸的含量远远高于海参中其他氨基酸的含量。海参肽指的海参经蛋白酶水解并分离提纯后得到的小分子肽,主要是胶原肽类[69,70],此外,海参体内还含有神经肽[71]、糖肽以及抗菌肽等多种活性肽。小分子多肽具有多种功效成分,如降血压、降血脂[72]、抗动脉粥样硬化、抗疲劳、抗菌[73,74]、提高免疫力、延缓衰老和抗氧化[75,76]等诸多生理功能,对人体生理机能有着其它营养物质不可替代的作用。由于海参多肽具有良好的溶解性、稳定性、低粘度性、易消化吸收、无抗原性,食用安全等特殊的理化性质,因此其比普通海参制品有更高的生物效价,符合食品和保健品的要求[77]。

Rodriguez E[78,79]等用从海参(Holothuria forskali)中酶解提取出来了的多肽喂养大鼠,测定海参多肽对大鼠血脂的影响,实验结果显示海参多肽能够明显升高血清高密度脂蛋白的含量,降低血清甘油三酯的的水平,从而达到降血脂的作用。王奕[80]实验结果表明日本刺参胶原蛋白多肽(AJCP)具有抗肿瘤作用和调节免疫功能的作用,不同剂量组的AJCP均能显著抑制小鼠S180肉瘤的生长,提高小鼠脾指数及胸腺指数(P<0.05),AJCP能显著提高荷瘤小鼠血清溶血素含量(P<0.01)和抗体形成细胞数(P<0.05),对紫外线诱导的皮肤光老化模型小鼠皮肤具有保护作用。海参多肽不仅可以加工成营养补充剂,而且也可以作为制备抗氧化,延缓衰老的保健品或化妆品的原料,具备良好的开发利用潜能。

2.4 海参脂类

海参中含有脂肪酸(Fatty acid)、神经节苷酯(Ganglioside)、脑苷脂[81,82](Cerebroside)等脂类物质。对采自热带和温带海域的12种海参分析发现,鲜海参体内总脂含量为0.24%~0.83%。磷脂(Phospholipids)约占总脂含量的12.5% ~29.0%,磷脂中鞘脂主要为神经酰胺,包括神经节苷酯和脑苷脂[83]。

海参体内主要含有20∶4(n-6)、20∶1、20∶5(n-3)、16∶0和18∶0等结构类型的脂肪酸。分布于温带水域的海参20∶5(n-3)脂肪酸含量较高,20∶4(n-6)脂肪酸含量较少。分布于热带水域的海参支链脂肪酸约占总脂肪酸的1%,而温带海参支链脂肪酸在总脂肪酸中的比例可高达15.5%[38]。

从叶瓜参(Cucumaria frondosa)中获得的一种支链脂肪酸12-MTA(12-Methytetradecanoic acid)具有抗前列腺癌细胞增殖的效果[84],因前列腺癌细胞的增殖与5-HETE(5-Hydroxyeicosatetraenoic acid)的形成有关。

Yamada K等从海参中提取出四种神经节苷脂分子,并对其生物活性研究表明海参神经节苷脂能协同神经长年因子(NGF)的作用诱发神经轴突生长(Neuritogenic activity)[85,86],同时在神经节苷脂分子中连接1~3个唾液酸(神经氨酸)基对诱发神经轴突生长也是必不可少的条件[6-8]。

脑苷脂类化合物作为细胞膜结构成分,在细胞间的识别、跨膜信息传导、细胞分化与生长以及细胞形态结构与功能的维持等方面,起到重要的生物学作用;此外脑苷脂类化合物还具有良好的药理学活性:如抗肿瘤、细胞毒活性、抗HIV病毒作用、抗肝毒素与肝保护作用等[87]。Tatsuya S[9]用脑苷脂处理结肠癌细胞,发现脑苷脂能过诱导癌细胞染色质片段形态变化,增加了半胱氨酸蛋白酶-3的活性,致使癌细胞凋亡,可辅助性的治疗结肠癌。

2.5 海参中的其它活性成分

Kuwahara H[88,89]等研究表明凝集素是一类具有抗原专一性,可促使细胞凝集的糖蛋白,在体液免疫及细胞免疫中起着重要的作用。不同种类的海参中的凝集素具有不同生物活性,如棘刺瓜参体内分离出的凝集素还具有溶血性,促使人类和老鼠的红细胞穿孔而溶血[90],而糙海参中获得的凝集素具有抗菌活性[91]。Janakiram N B等[92,93]证明从叶瓜参中提取出的糖脂类物质 Frondanol A5,Frondanol (R)-A5p分别具有抗结肠癌和抗胰腺癌的作用,且对人体正常的细胞无毒害作用。海参中还含有色素以及蛋氨酸、牛磺酸、钒、硒、锗、维生素PP等微量物质[94]。这些物质是人生长发育所必需的,具有不可替代的生理功能。

3 研究展望

海参的各种生物活性成分具有多种药理活性,作为海洋药物领域一个热点方向,其热度经久不衰,对其深入的研究将是一项非常有意义的工作,有助于探索生物间相互作用的机制。目前海参的各种生物活性作用的机制还不清楚,尤其是有关细胞分子生物学作用调控机制还有待进一步研究,国内有关该方面的研究近于空白,这是未来海参抗肿瘤研究的重点。同时,功能性食品已经成为海参深度开发利用的重要方向,但存在加工方法科技含量不高、海参行业标准亟待建立等问题,海参深加工技术依然需要创新。我们可以通过强化海参从原料到生产工艺的深入研发,采用现代高新技术如膜分离、微胶囊、超临界流体萃取及生物技术等明确海参产品的功能因子和确切的健康价值。

1 Han H,et al.Triterpene glycosides from sea cucumber Holothuria leucospilota.Chin J Nat Med,2009,7:346-350.

2 Li Z,et al.Basic and clinical study on the antithrombotic mechanism of glycosaminoglycan extracted from sea cucumber.Chin Med J-peking(Engl),2000,113:706-711.

3 Van Dyck S,Gerbaux P,Flammang P.Qualitative and quantitative saponin contents in five sea cucumbers from the Indian ocean.Mar Drugs,2010,8:173-189.

4 Cui FX,et al.Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus.Food Chem,2007,100:1120-1125.

5 Fredalina BD,et al.Fatty acid compositions in local sea cucumber,Stichopus chloronotus,for wound healing.Gen Pharmacol,1999,33:337-340.

6 Yamada K,et al.Constituents of Holothuroidea,13.Structure of neuritogenic active ganglioside molecular species from the sea cucumber Stichopus chloronotus.Chem Pharm Bull(Tokyo),2003,51:46-52.

7 Yamada K.Chemo-pharmaceutical studies on the glycosphingolipid constituents from echinoderm,sea cucumbers,as the medicinal materials.Yakugaku Zasshi,2002,122:1133-1143.

8 Yamada K,et al.Constituents of holothuroidea.9.Isolation and structure of a new ganglioside molecular species from the sea cucumber Holothuria pervicax.Chem Pharm Bull,2000,48:157-159.

9 Tatsuya S,et al.Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells.Biosci Biotech Bioch,2006,70:2906-2912.

10 Cui GY(崔桂友),Zhao L(赵廉).Names and species identifying of edible sea cucumber in china.Cuisine J Yangzhou Univ(扬州大学烹饪学报),2000,17:13-18.

11 Kariya Y,et al.Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis.Carbohydr Res,2004,339:1339-1346.

12 Wu M,et al.Preparation and characterization of molecular weight fractions of glycosaminoglycan from sea cucumber Thelenata ananas using free radical depolymerization.Carbohydr Res,2010,345:649-655.

13 Wu J(巫军).Studies on the bioactive constituents from sea cucumber Holothuria nobilis and Holothuria hilla.Shanghai (China):Second Military Medical University(第二军医大学),PhD.2005.

14 Han H(韩华).Studies on the constituents from sea cucumber Holothuria leucospilota and Holothuria scabra.Shanghai (China):Second Military Medical University(第二军医大学),PhD.2007.

15 Kariya Y,et al.Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus.Carbohydr Res,1997,297:273-279.

16 Sheng WJ(盛文静),et al.Chemical component analysis of polysaccharides from different sea cucumbers.Chin J Mar Drugs(中国海洋药物杂志),2007,26:44-49.

17 Zhou XY(周湘盈),Xu GF(徐贵发).Effect of freeze-dried sea cucumber powder of eastern sea on tumor and immune index of S180-bearing mouse.J Hyg Res(卫生研究),2008,37:30-32.

18 Gao X(高翔),et al.Study on glycosaminoqlycan extracted from holothuriand and its anti-tumor activity.Sci Tech Food Ind(食品工业科技),2008,29:117-123.

19 Minamiguchi K,et al.Depolymerized holothurian glycosaminoglycan(DHG),a novel alternative anticoagulant for hemodialysis,is safe and effective in a dog renal failure model.Kidney Int,2003,63:1548-1555.

20 Kariya Y,et al.Enhancement of t-PA-mediated plasminogen activation by partially defucosylated glycosaminoglycans from the sea cucumber Stichopus japonicus.J Biochem,2002,132:335-343.

21 Wu M,et al.Free-radical depolymerization of glycosaminoglycan from sea cucumber Thelenata ananas by hydrogen peroxide and copper ions.Carbohydr Polym,2010,80:1116-1124.

22 Wu M,et al.Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas.Food Chem,2010,122:716-723.

23 Tapon-Bretaudiere J,et al.Modulation of vascular human endothelial and rat smooth muscle cell growth by a fucosylated chondroitin sulfate from echinoderm.J Thromb Haemost,2000,84:332-337.

24 Fonseca RJ,Santos GR,Mourao PA.Effects of polysaccharides enriched in 2,4-disulfated fucose units on coagulation,thrombosis and bleeding.Practical and conceptual implications.J Thromb Haemost,2009,102:829-836.

25 Shen WZ(沈卫章).Study on molecular mechanisms of glanzmann thrombasthenia and antithrombotic mechanisms of holothurian glycosaminoglycan extracted from sea cucumber.Jilin(China):Jilin University(吉林大学),PhD.2008.

26 Wang ML(王曼玲).Study on the antiadhesive effect of holothurian glycosaminoglycan on platelet-endothelial cell adhesion and involved mechanisms.Shanghai(China):Fudan U-niversity(复旦大学),PhD.2006.

27 Yuan WH(袁卫华).Studies on the bioactive constituents from Bohadschia mrarmorata Jaeger& Holothuria(Microthele)Axiloga H.L.CIark.Shanghai(China):Second Military Medical University(第二军医大学),PhD.2008.

28 Zhang YJ,et al.Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus.J Biosci Bioeng,2010,109:67-72.

29 Zhang YJ,et al.Enhancing effect of a sea cucumber Stichopus japonicus sulfated polysaccharide on neurosphere formation in vitro.J Biosci Bioeng,2010,In Press,Corrected Proof.

30 Diao HX,et al.Protective effect of polysaccharides from sea cucumber on glu-induced neurotoxicity in PC12 cells.Zhong Yao Cai,2009,32:398-400.

31 Silchenko AS,Stonik VA,Avilov SA.Holothurins B2,B3,and B4,new triterpene glycosides from mediterranean sea cucumbers of the genus Holothuria.J Nat Prod,2005,68:564-567.

32 Antonov AS,et al.Triterpene glycosides from Antarctic sea cucumbers.2.Structure of Achlioniceosides A(1),A(2),and A(3)from the sea cucumber Achlionice violaecuspidata (=Rhipidothuria racowitzai).J Nat Prod,2009,72:33-38.

33 Han H,et al.Leucospilotaside C,a new sulfated triterpene glycoside from sea cucumber Holothuria leucospilota.Chinese Chem Lett,2008,19:1462-1464.

34 Kalinin VI,et al.Triterpene glycosides from sea cucucmbers (Holothurioidea,Echinodermata).Biological activities and functions.in:Atta-ur-Rahman F.R.S.,(Ed.),Stud Nat Prod Chem,Elsevier,2008,pp.135-196.

35 Van Dyck S,Gerbaux P,Flammang P.Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali(Echinodermata)by mass spectrometry.Comp Biochem Phys B:Biochem Molec,2009,152: 124-134.

36 Ana PM,Claudia M,Alicia MS.Patagonicoside A:a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus.Tetrahedron,2001,57:9563-9568.

37 Maier MS,et al.Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei.J Nat Prod,2001,64:732-736.

38 Hegde VR,et al.Two selective novel triterpene glycosides from sea cucumber,Telenata Ananas:inhibitors of chemokine receptor-5.Bioorg Med Chem Lett,2002,12:3203-3205.

39 Zhang SY,Tang HF,Yi YH.Cytotoxic triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.Fitoterapia,2007,78:283-287.

40 Zhang SY,et al.Two new bioactive triterpene glycosides from sea cucumber Pseudocolochirus violaceus.J Asian Nat Prod Res,2006,8:1-8.

41 Chludil HD,et al.Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis.J Nat Prod,2002,65:860-865.

42 Zhang SY,Yi YH,Tang HF.Bioective triterpene glycosides from the sea cucumber Holothuria fuscocinerea.J Nat Prod,2006,69:1492-1495.

43 Zou ZR,et al.Intercedensides A-C,three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert.J Nat Prod,2003,66:1055-1060.

44 Zou ZR,et al.Intercedensides D-I,Cytotoxic triterpene glycosidesfrom the sea cucumber Mensamaria intercedens Lampert.J Nat Prod,2005,68:540-546.

45 Antonov AS,et al.Triterpene glycosides from Antarctic sea cucumbers.1.Structure of liouvillosides A1,A2,A3,B1,and B2 from the sea cucumber Staurocucumis liouvillei:new procedure for separation of highly polar glycoside fractions and taxonomic revision.J Nat Prod,2008,71:1677-1685.

46 Zhang SL,et al.Lecanorosides A and B,two new triterpene glycosides from the sea cucumber Actinopyga lecanora.J Asian Nat Prod Res,2008,10:1097-1103.

47 Kumar R,et al.Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora.Bioorg&Med Chem Lett,2007,17:4387-4391.

48 Han H,et al.Two new cytotoxic disulfated holostane glycosides from the sea cucumber Pentacta quadrangularis.Chem Biodivers,2010,7:158-167.

49 Yuan WH,et al.Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata.Planta Med,2009,75: 168-173.

50 Yuan WH,et al.Two antifungal active triterpene glycosides from sea cucumber Holothuria(Microthele)axiloga.Chin J Nat Med,2008,6:105-108.

51 Wu J,et al.Hillasides A and B,two new cytotoxic triterpene glycosides from the sea cucumber Holothuria hilla Lesson.J Asian Nat Prod Res J,2007,9:609-615.

52 Zhang SY,Yi YH,Tang HF.Cytotoxic sulfated triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.Chem Biodivers,2006,3:807-817.

53 Wu J,et al.Nobilisides A-C,three new triterpene glycosides from the sea cucumber Holothuria nobilis.Planta Med,2006,72:932-935.

54 Han H,et al.A novel sulfated holostane glycoside from sea cucumber Holothuria leucospilota.Chem Biodivers,2010,7: 1764-1769.

55 Han H,et al.Cytotoxic holostane-type triterpene glycosides from the sea cucumber Pentacta quadrangularis.Planta Med,2010,76:1900-1904.

56 Aminin DL,et al.Antitumor activity of the immunomodulatory lead Cumaside.Int Immunopharmacol,2010,10:648-654.

57 Han H,et al.Antifungal active triterpene glycosides from sea cucumber Holothuria scabra.Yao Xue Xue Bao,2009,44: 620-624.

58 Han H,et al.Two new cytotoxic triterpene glycosides from the sea cucumber Holothuria scabra.Planta Med,2009,75: 1608-1612.

59 Aminin DL,et al.Immunomodulatory properties of frondoside A,a major triterpene glycoside from the North Atlantic commercially harvested sea cucumber Cucumaria frondosa.J Med Food,2008,11:443-453.

60 Li X,et al.Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound,Frondoside A.Ann N Y Acad Sci,2008,1138: 181-198.

61 Hu XQ,et al.Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARalpha and SREBP-1c signaling.Lipids Health Dis,2010,9:25.

62 Singh N,et al.Antileishmanial activity in vitro and in vivo of constituents of sea cucumber Actinopyga lecanora.Parasitol Res,2008,103:351-354.

63 Xiong Y(熊阳),et al.Preliminary study on sea cucumber saponin-nobiliside A liposome and its hemolytic activity.Acta Pharm Sin(药学学报),2008,43:214-220.

64 Muniain C,et al.Chemical ecology and bioactivity of triterpene glycosides from the sea cucumber Psolus patagonicus (Dendrochirotida:Psolidae).J Mar Biol Assoc UK,2008,88: 817-823.

65 Wang JF(王静凤),et al..Comparative investigation on the effects of triterpene glycosides from three kinds of sea cucumber on vascular endothelial cells.Period Ocean Univ China(中国海洋大学学报),2008,38:221-224.

66 Avilov SA,et al.Synaptosides A and A1,triterpene glycosides from the sea cucumber Synapta maculata containing 3-O-methylglucuronic acid and their cytotoxic activity against tumor cells.J Nat Prod,2008,71:525-531.

67 Maier MS,Biological activities of sulfated glycosides from echinoderms.in:Atta-ur-Rahman F.R.S.,(Ed.),Stud Nat Prod Chem,Elsevier,2008,pp.311-354.

68 Silchenko AS,et al.Constituents of the sea cucumber Cucumaria okhotensis.Structures of okhotosides B1-B3 and cytotoxic activities of some glycosides from this species.J Nat Prod,2008,71:351-356.

69 Liu Z,Oliveira AC,Su YC.Purification and characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber(Parastichopus californicus).J Agric Food Chem,2010,58:1270-1274.

70 Dong X,et al.Extraction and properties of collagen from sea cucumber(Stichopus japonicus)body wall.J Biotechn,2008,136(Supplement 1):S596-S596.

71 Kato S,et al.Neuronal peptides induce oocyte maturation and gamete spawning of sea cucumber,Apostichopus japonicus.Dev Biol,2009,326:169-176.

72 Tanaka K,et al.Effects of dietary black sea cucumber on serum and liver lipid concentrations in rats.J Jpn Soc Food Sci, 2003,56:175-179.

73 Wang X,et al.Recombinant expression and antibacterial activity of i-type lysozyme from sea cucumber Stichopus japonicus.Sheng Wu Gong Cheng Xue Bao,2009,25:189-194.

74 Cong L,et al.Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus,and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein.J Biosci Bioeng,2009,107:583-588.

75 Zhong Y,Khan MA,Shahidi F.Compositional characteristics and antioxidant properties of fresh and processed sea cucumber(Cucumaria frondosa).J Agric Food Chem,2007,55: 1188-1192.

76 Jingfeng W,et al.Antioxidation activities of low-molecularweight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus.Period Ocean Univ China,2010,9:94-98.

77 Liu Z,Oliveira AC,Su YC.Purification and characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber(Parastichopus californicus).J Agric Food Chem,2010,58:1270-1274.

78 Rodriguez E,et al.Nutritional value of Holothuria forskali protein and effects on serum lipid profile in rats.J Physiol Biochem,2000,56:39-43.

79 Taboada MC,Gonzalez M,Rodriguez E.Value and effects on digestive enzymes and serum lipids of the marine invertebrate Holothuria forskali.Nutr Res,2003,23:1661-1670.

80 Wang Y(王奕).Study on skin protective property of AJCP and SSCP.Qindao(China):China Ocean University(中国海洋大学),PhD.2007.

81 Ikeda Y,et al.Isolation and structure of a galactocerebroside from the sea cucumber Bohadschia argus.Chem Pharm Bull (Tokyo),2009,57:315-317.

82 Ikeda Y,et al.Langmur monolayers of cerebroside with different head groups originated from sea cucumber:binary systems with dipalmitoylphosphatidylcholine(DPPC).Colloids Surf B Biointer,2009,72:272-283.

83 Muralidhar P,et al.Sphingolipids from marine organisms:A review.Nat Prodt Sci,2003,9:117-142.

84 Hirata T,et al.Recent advances in researches on physiologically active substances in holothurians.J Ocean Univ China,2005,4:193-197.

85 Kisa F,et al.Constituents of Holothuroidea,18.Isolation and structure of biologically active disialo-and trisialo-gangliosides from the sea cucumber Cucumaria echinata.Chem Pharm Bull,2006,54:1293-1298.

86 Kisa F,et al.Constituents of Holothuroidea,17.Isolation and structure of biologically active monosialo-gangliosides from the sea cucumber Cucumaria echinata.Chem Pharm Bull,2006,54:982-987.

87 Sugawara T,et al.Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells.Biosci Biotech Bioch,2006,70:2906-2912.

88 Kuwahara H,et al.Oligomerization process of the hemolytic lectin CEL-III purified from a sea cucumber,Cucumaria echinata.J Biochem,2002,131:751-756.

89 Gowda NM,Goswami U,Khan MI.Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate,sea cucumber(Holothuria scabra).Fish Shellfish Immunol,2008,24:450-458.

90 Yoshida S,et al.Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.PLoS Pathog,2007,3:e192.

91 Gowda NM,Goswami U,Khan MI.T-antigen binding lectin with antibacterial activity from marine invertebrate,sea cucumber(Holothuria scabra):possible involvement in differential recognition of bacteria.J Invertebr Pathol,2008,99 (2):141-145.

92 Janakiram NB,et al.Chemopreventive effects of Frondanol A5,a Cucumaria frondosa extract,against rat colon carcinogenesis and inhibition of human colon cancer cell growth.Cancer Prev Res(Phila Pa),2010,3:82-91.

93 Roginsky AB,et al.Anti-pancreatic cancer effects of a polar extract from the edible sea cucumber,Cucumaria frondosa.Pancreas,2010,39:646-652.

94 Wang Y,et al.Analysis study of trace elements in abalone and sea cucumber.Guang Pu Xue Yu Guang Pu Fen Xi,2009,29:511-514.

Advances on the Research of Sea Cucumber Biological Activities

ZHANG Mei-xiu,WANG Xi-chang,LIU Yuan*
College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China

Sea cucumber is important marine food and medicinal materials.It contains a variety of biologically active ingredients,such as polysaccharides,saponins,peptides,proteins,lipids and other active ingredients.They possess the activities of immunopotentiation,anti-coagulation,analgesic,and anti-tumor,anti-fungal,anti-virus,anti-aging and anti-fatigue and other physiological functions.The summary reviewed the distribution of sea cucumber resources in China and the component and biological activity of sea cucumbers,which may provide the theoretical basis for scientists researching the sea cucumber from the cellular and molecular level and searching for new marine effective drugs and developing functional food.It also provides new ideas for rich sea cucumber resources development and utilization of China.

Sea cucumber;resource distribution;biological activity;pharmacological effects;progress

1001-6880(2012)08-1151-09

2011-01-04 接受日期:2011-03-16

“十一五”国家科技支撑计划课题(2008BAD94B09),欧盟项目(Sustaining Ethical Aquaculture Trade(Grant agreement 222889)),上海市教委重点学科建设项目(J50704)

*通讯作者 Tel:86-21-61900380;E-mail:yliu@shou.edu.cn

R284.2

A

猜你喜欢
刺参海参皂苷
感谢海参
夏眠的刺参
夏眠的刺参
3 种不同体色刺参体壁营养成分的比较研究*
光照对白刺参、青刺参和紫刺参生长、消化及免疫的影响
古今八珍之葱烧海参
HPLC-MS/MS法同时测定三七花总皂苷中2种成分
海参易变弯,掺了糖
HPLC法测定大鼠皮肤中三七皂苷R1和人参皂苷Rb1
HPLC法同时测定熟三七散中13种皂苷