云南金钱槭茎化学成分

2012-11-23 16:23王跃虎石亚娜李兴玉李文昌龙春林
天然产物研究与开发 2012年8期
关键词:脂素柱层析甲氧基

郭 蓉,王跃虎,石亚娜,3,李兴玉,4,李文昌,龙春林,5*

1中国科学院昆明植物研究所资源植物与生物技术重点实验室,昆明650201;2云南省农业科学院经济作物研究所;3云南省农业科学院药用植物研究所,昆明650205;4云南农业大学基础与信息工程学院,昆明650201;5中央民族大学生命与环境科学学院,北京100081

云南金钱槭茎化学成分

郭 蓉1,2,王跃虎1,石亚娜1,3,李兴玉1,4,李文昌2*,龙春林1,5*

1中国科学院昆明植物研究所资源植物与生物技术重点实验室,昆明650201;2云南省农业科学院经济作物研究所;3云南省农业科学院药用植物研究所,昆明650205;4云南农业大学基础与信息工程学院,昆明650201;5中央民族大学生命与环境科学学院,北京100081

对云南金钱槭枝条部分的化学成分进行了研究,从其乙醇提取物中共分离鉴定了16个化合物,通过波谱学方法鉴定为:erythro-4,7,9-三羟基-3,3'-二甲氧基-8-O-4'-新木脂素-9'-O-β-D-吡喃葡萄糖苷(1),Hyuganoside IIIa(2),Hyuganoside IIIb(3),erythro-Buddlenol B(4),erythro-7',8'-Didehydrobuddlenol B(5),(±)-丁香脂素(6),臭矢菜素A(7),柑橘苷A(8),(4R)-p-薄荷-1-烯-7,8-二醇7-O-β-D-吡喃葡萄糖苷(9),2-甲氧基-3-(3-吲哚基)丙酸(10),肌苷(11),Tachioside(12),Isotachioside(13),3-O-(β-D-吡喃葡萄糖基)-1-(3,5-二甲氧基-4-羟基苯基)-1-丙酮(14),反式异松柏苷(15),4-[(E)-3-乙氧基-1-丙烯基]-2-甲氧基苯酚(16)。其中化合物5为新的倍半木脂素,其余化合物均首次从该属植物中分离得到。

槭树科;云南金钱槭;木脂素;香豆素;萜类

槭树科(Aceraceae)共2属,金钱槭属(Dipteronia)和槭属(Acer)[1]。槭属植物含有多种生物活性物质,如三萜皂苷具有抗肿瘤活性[2],二苯乙烯苷具有保肝和抗氧化的活性[3,4],黄酮类能抑制HIV-1整合酶的活性[5]。金钱槭属是中国特有属,仅有两种,金钱槭(Dipteronia sinensis Oliv.)和云南金钱槭(Dipteronia dyeriana Henry)。我们此前的研究表明,云南金钱槭果实中含有罕见的环己酰亚胺类成分[6],叶中含有大量的酚性成分[7],茎中含有木脂素及三萜酯皂苷类成分[8,9],其中倍半木脂素7',8'-didehydroherpetotriol有细胞毒活性[8]。在进一步的研究中,我们又从云南金钱槭茎中发现了16个化合物,化合物类型涉及木脂素、香豆素、萜类等,报道如下。

1 仪器与材料

旋光通过JASCO DIP-370型数字式旋光仪测定;紫外光谱(UV)由Shimadzu双光束210A紫外分光光度仪测定;CD谱由日本产JASCO J-715型圆二色谱仪测定;红外光谱(IR)用Bio-Rad FTS-135型红外光谱仪测定(KBr压片);1H和13C NMR和2D NMR谱在Bruker AM-400或DRX-500核磁共振仪上测定(TMS为内标);FAB-MS由VG Auto Spec-3000质谱仪测定;ESIMS和HR-ESI-MS由API Qstar Pulsar1质谱仪测定。柱层析用硅胶G(200-300目)或硅胶H(10~40 μm)及薄层层析板均为青岛海洋化工厂产品;薄层层析通过5%硫酸-乙醇溶液加热观察其斑点;Sephadex LH-20为Pharmcia公司产品;反相材料RP-18及RP-18薄层板为Merck公司产品;D101大孔树脂为青岛美高公司产品;高效液相色谱仪(Agilent 1200;色谱柱为Zorbax SB-C18,9.4× 250 mm,5 μm)。

供实验用的云南金钱槭植物样品于2007年1月采自云南省屏边县,由中国科学院昆明植物研究所龙春林研究员鉴定;标本存放于中国科学院昆明植物研究所资源植物与生物技术重点实验室。

2 提取与分离

将云南金钱槭枝条晒干后(11.5 kg)粉碎,用95%乙醇加热回流提取三次,合并提取液,浓缩得浸膏1.35 kg。浸膏加水制成混悬液,依次用石油醚和乙酸乙酯各萃取三次,回收溶剂得石油醚萃取物11 g,乙酸乙酯萃取物200 g,水部分1135 g。

水部分经大孔树脂柱层析得水洗脱部分(弃)及乙醇洗脱部分(83 g)。乙醇洗脱部分经硅胶柱层析,氯仿-甲醇混合溶剂梯度洗脱(8∶1,4∶1,2∶1,1∶1,0∶1),得到九个部分(Fr.1-Fr.9),将Fr.3经中压反相硅胶柱层析,5%甲醇洗脱部分经HPLC分离(甲醇-水,10∶90),得到化合物12(12.8 mg)和13 (9.4 mg);10%甲醇洗脱部分经凝胶柱层析(甲醇),后在甲醇中结晶析出化合物11(14.7 mg); 30%甲醇洗脱部分经凝胶柱层析(甲醇)后用硅胶柱层析(氯仿-丙酮,2∶3)洗脱得到A-E共5部分。将D部分经HPLC分离(甲醇-水,30∶70),得到化合物1(7.2 mg)、8(3.7 mg)和14(3.6 mg);将E部分经HPLC分离(乙腈-水,15∶85),得到化合物2(6.2 mg)和3(4.4 mg);将B部分经凝胶柱层析和HPLC分离(乙腈-水,20∶80),得到化合物9(12.2 mg)和15(2.0 mg)。将Fr.9经过硅胶柱层析(氯仿-甲醇,1∶2;乙酸乙酯-甲醇,1∶3)洗脱得到化合物10(35.5 mg)。

乙酸乙酯部分经硅胶柱层析,氯仿-甲醇混合溶剂梯度洗脱(1∶0,10∶1,5∶1,1∶1,0∶1),得到十个部分(I-X)。将第III部分经凝胶柱层析(甲醇)和制备性TLC(石油醚-氯仿,1∶10)得到化合物6(19.7 mg)和16(9.0 mg)。第IV部分经HPLC分离(甲醇-水,50∶50)得到化合物7(5.1 mg)。将第V部分经凝胶柱层析(甲醇)、硅胶柱层析(氯仿-丙酮,5∶1和3∶1)和HPLC(甲醇-水,55∶45)分离,得到化合物4(7.5 mg)。第VI部分经凝胶柱层析(甲醇)和HPLC(乙腈-水,60∶40)分离,得到化合物5(6.6 mg)。

图1 化合物1~16的结构Fig.1 The structures of compounds 1-16

3 结构鉴定

化合物5的分子式由其高分辨质谱确定为C31H34O11,不饱和度为15。其红外光谱显示了化合物5可能含有羟基(3431 cm-1)和芳环(1614,1599,1580,1515,1504 cm-1)等官能团。其NMR谱(表1)显示了31碳信号,包括4个甲氧基信号。化合物5与已知化合物erythro-buddlenol B(4)的NMR数据非常相似,推测其可能也是一个倍半木脂素。比较两者的13C NMR数据发现,化合物4中苯并二氢呋喃的特征信号δC88.9(C-7',d)和55.4(C-8',d)在5中消失了,而在低场多出了两个烯烃碳信号。考虑到化合物5的不饱和度比化合物4的多一个,因此推测化合物5的C-7'与C-8'可能脱氢形成了双键。在化合物5的HMBC相关谱(图2)中,H2-9'跟C-3和C-7',以及H-2'和H-6'跟C-7'有相关点,从而证实了上述推论。根据其余的HMBC相关,化合物5的平面结构得以确立(如图2所示)。H-7''与H-8''的相对构型由它们之间的偶合常数(J7'',8''=5.1 Hz)确定为erythro式构型[10]。最后,将化合物5鉴定为erythro-7',8'-didehydrobuddlenol B,是一个新的倍半木脂素。

图2 化合物5关键的HMBC相关Fig.2 Key HMBC correlations for compound 5

表1 化合物5的1H(500 MHz)和13C NMR(100 MHz)数据(CD3OD;δ in ppm,J in Hz)Table 1 1H NMR(500 MHz)and13C NMR(100 MHz)data of 5(CD3OD;δ in ppm,J in Hz)

已知化合物是通过与文献对比波谱数据而鉴定的,其波谱数据如下:

erythro-4,7,9-三羟基-3,3'-二甲氧基-8-O-4'-新木脂素-9'-O-β-D-吡喃葡萄糖苷(1):白色粉末,C26H36O12;[α]27D=-15.4(c=0.50,MeOH);1H NMR (CD3OD,400 MHz)δ:6.99(1H,d,J=1.6 Hz,H-2),6.72(1H,d,J=8.0 Hz,H-5),6.66(1H,dd,J =8.0,1.6 Hz,H-6),6.79~6.82(3H,m,H-2',5',6'),2.63(2H,t,J=7.2 Hz,H-7'),1.88(2H,m,H-8'),3.78,3.79(3H each,both s,3,3'-OCH3),4.24 (1H,d,J=8.0 Hz,H-1'');13C NMR(CD3OD,100 MHz)δ:134.1(C-1,s),118.1(C-2,d),148.7(C-3,s),147.2(C-4,s),115.6(C-5,d),121.0(C-6,d),74.2(C-7,d),86.6(C-8,d),62.2(C-9,t),138.0(C-1',s),114.1(C-2',d),151.8(C-3',s),147.0(C-4',s),119.6(C-5',d),121.9(C-6',d),32.7(C-7',t),32.7(C-8',t),69.9(C-9',t),56.3 (3-OCH3,q),56.5(3'-OCH3,q),104.5(C-1'',d),75.2(C-2'',d),77.9(C-3'',d),71.7(C-4'',d),78.1(C-5'',d),62.8(C-6'',t)。1H NMR和13C NMR数据和文献报道一致[11]。

Hyuganoside IIIa(2):白色粉末,C26H34O12;[α]27D=-36.9(c=0.43,MeOH);1H NMR(CD3OD,500 MHz)δ:7.00(2H,s,H-2,2'),6.71(1H,d,J= 8.0 Hz,H-5),6.87(1H,d,J=8.0 Hz,H-6),6.88 (1H,d,J=8.0 Hz,H-5'),6.82(1H,d,J=8.0 Hz,H-6'),6.58(1H,br d,J=15.5 Hz,H-7'),6.23 (1H,ddd,J=15.5,6.5,6.5 Hz,H-8'),3.792,3.787 (3H each,both s,3,3'-OCH3),4.81(1H,d,J=7.5 Hz,H-1'');13C NMR(CD3OD,125 MHz)δ:134.1 (C-1,s),111.9(C-2,d),148.7(C-3,s),147.0(C-4,s),115.7(C-5,d),121.0(C-6,d),74.1(C-7,d),86.1(C-8,d),62.3(C-9,t),132.8(C-1',s),111.5(C-2',d),151.9(C-3',s),149.1(C-4',s),118.8(C-5',d),120.8(C-6',d),133.6(C-7',d),125.2(C-8',d),70.9(C-9',t),56.4(3-OCH3,q),56.5(3'-OCH3,q),103.2(C-1'',d),75.1(C-2'',d),78.0(C-3'',d),71.7(C-4'',d),78.1(C-5'',d),62.8(C-6'',t)。1H NMR和13C NMR数据和文献报道一致[12]。

Hyuganoside IIIb(3):白色粉末,C26H34O12;[α]27D=-54.2(c=0.29,MeOH);1H NMR(CD3OD,500 MHz)δ:7.01(1H,t,J=1.5 Hz,H-2),6.74 (1H,J=8.0 Hz,H-5),6.83(1H,dd,J=8.0,1.5 Hz,,H-6),7.07(1H,d,J=1.5 Hz,H-2'),6.98 (1H,d,J=8.5 Hz,H-5'),6.92(1H,dd,J=8.5,1.5 Hz,H-6'),6.59(1H,d,J=15.5 Hz,H-7'),6.27(1H,ddd,J=15.5,6.5,6.5 Hz,H-8'),3.72,3.87(3H each,both s,3,3'-OCH3),4.35(1H,d,J =8.0 Hz,H-1'');13C NMR(CD3OD,100 MHz)δ: 133.8(C-1,s),111.7(C-2,d),148.8(C-3,s),147.2(C-4,s),115.8(C-5,d),120.9(C-6,d),74.0(C-7,d),87.0(C-8,d),61.9(C-9,t),132.8 (C-1',s),111.3(C-2',d),151.7(C-3',s),149.4 (C-4',s),118.6(C-5',d),120.7(C-6',d),133.6 (C-7',d),125.3(C-8',d),70.8(C-9',t),56.3(3-OCH3,q),56.5(3'-OCH3,q),103.2(C-1'',d),75.1(C-2'',d),78.0(C-3'',d),71.7(C-4'',d),78.1(C-5'',d),62.8(C-6'',t)。1H NMR和13C NMR数据和文献报道相一致[12]。

erythro-Buddlenol B(4):白色粉末,C30H34O10;1H NMR(CD3OD,400 MHz)δ:6.53(1H,d,J =15.8 Hz,H-7),6.22(1H,ddd,J=15.8,5.6,5.6 Hz,H-8),5.56(1H,dd,J=6.0,2.4 Hz,H-7'),3.87,3.82,3.77,3.77(3H each,s,3,3',5',3''-OCH3);13C NMR(CD3OD,100 MHz)δ:132.8(C-1,s),112.1(C-2,d),145.5(C-3,s),149.1(C-4,s),130.0(C-5,s),116.5(C-6,d),131.9(C-7,d),127.7(C-8,d),63.8(C-9,t),136.3(C-1',s),103.8(C-2',6',d),154.6(C-3',5',s),139.4(C-4',s),88.9(C-7',d),55.4(C-8',d),64.9(C-9',t),133.7(C-1'',s),111.3(C-2'',d),148.6(C-3'',s),146.8(C-4'',s),115.6(C-5'',d),120.7 (C-6'',t),74.0(C-7'',d),87.3(C-8'',d),61.6 (C-9'',t),56.6(3-OCH3,q),56.8(3',5'-OCH3,q),56.3(3''-OCH3,q)。其13C NMR数据和文献报道一致[13-15]。

erythro-7',8'-Didehydrobuddlenol B(5):白色粉末;[α]22D=-6.1(c=0.175,MeOH);UV(MeOH) λmax(log ε)301(3.72),279(3.76),230(3.80),205(3.90)nm;IR(KBr)νmax3431,1614,1599,1580,1515,1504,1464,1278,1127,1030 cm-1;1H和13C NMR数据见表一;ESI-MS m/z 605[M+ Na]+,1187[2M+Na]+;HR-ESI-MS m/z 605.1998[M+Na]+(calcd for C31H34O11Na,605.2014)。

(±)-丁香脂素[(±)-syringaresinol,6]:白色粉末,C22H26O8;[α]23D=0(c=0.49,MeOH);1H NMR(CD3OD,500 MHz)δ:6.66(4H,s,H-2,6,2',6'),4.71(2H,m,H-7,7'),3.13(1H,m,H-8,8'),4.25(2H,m,H-9a,9'a),3.87(2H,m,H-9b,9'b),3.84(12H,s,OCH3);13C NMR(CD3OD,125 MHz) δ:133.1(C-1,1',s),104.5(C-2,6,2',6',d),149.3(C-3,5,3',5',s),136.2(C-4,4',s),87.6 (C-7,7',d),55.5(C-8,8',d),72.7(C-9,9',t),56.8(OCH3,q)。13C NMR数据和文献报道相一致[16]。

臭矢菜素A(cleomiscosin A,7):白色粉末,C20H18O8;1H NMR(DMSO-d6,400 MHz)δ:6.34(1H,d,J=9.6 Hz,H-3),7.96(1H,d,J=9.6 Hz,H-4),6.92(1H,s,H-5),7.03(1H,s,H-2'),6.87(1H,d,J=8.0 Hz,H-5'),6.81(1H,d,J=8.0 Hz,H-6'),4.98(1H,d,J=8.0 Hz,H-7'),4.32(1H,m,H-8'),3.38-3.68(2H,m,H2-9'),3.76(6H,s,6,3'-OCH3);13C NMR(DMSO-d6,100 MHz)δ:160.1 (C-2,s),113.2(C-3,d),144.9(C-4,d),100.8 (C-5,d),145.3(C-6,s),137.1(C-7,s),131.7(C-8,s),138.0(C-9,s),111.3(C-10,s),126.7(C-1',s),112.0(C-2',d),147.6(C-3',s),147.3(C-4',s),115.4(C-5',d),120.8(C-6',d),76.3(C-7',d),77.8(C-8',d),59.9(C-9',t),56.0(6-OCH3,q),55.8(3'-OCH3,q)。1H NMR和13C NMR数据和文献报道一致[17]。

柑橘苷A(citroside A,8):白色粉末,C19H30O8;1H NMR(CD3OD,400 MHz)δ:4.32(1H,m,H-3),5.88(1H,s,H-8),2.19(3H,s,H-10),1.15 (3H,s,H-11),1.46(3H,s,H-12),1.37(3H,s,H-13),4.51(1H,d,J=8.0 Hz,H-1');13C NMR (CD3OD,100 MHz)δ:37.0(C-1,s),49.2(C-2,t),63.8(C-3,d),48.0(C-4,t),78.7(C-5,s),119.1 (C-6,s),212.9(C-7,s),101.4(C-8,d),200.7(C-9,s),26.7(C-10,q),32.5(C-11,q),26.6(C-12,q),30.0(C-13,q),98.7(C-1',d),75.3(C-2',d),78.6(C-3',d),71.7(C-4',d),77.8(C-5',d),62.9(C-6',t)。1H NMR和13C NMR数据和文献报道相一致[18]。

(4R)-p-薄荷-1-烯-7,8-二醇-7-O-β-D-吡喃葡萄糖苷(9):白色粉末,C16H28O7;1H NMR(CD3OD,500 MHz)δ:5.74(1H,br s,H-2),4.21(1H,d,J= 11.0 Hz,H-7a),4.01(1H,d,J=11.0 Hz,H-7b),1.151,1.146(3H each,both s,H-9,10),4.25(1H,d,J=8.0 Hz,H-1'),3.85(1H,dd,J=11.9,2.0 Hz,H-6'a),3.66(1H,dd,J=11.9,5.6 Hz,H-6' b);13C NMR(CD3OD,125 MHz)δ:135.6(C-1,s),126.3(C-2,d),27.8(C-3,t),46.3(C-4,d),24.8 (C-5,t),28.1(C-6,t),74.5(C-7,t),73.1(C-8,s),26.3(C-9,q),27.1(C-10,q),103.0(C-1',d),75.1(C-2',d),78.1(C-3',d),71.7(C-4',d),77.9(C-5',d),62.7(C-6',t)。1H NMR和13C NMR数据和文献报道一致[19]。

2-甲氧基-3-(3-吲哚基)丙酸(10):白色粉末,C12H13NO3;[α]18D=+53.3(c=0.23,MeOH);1H NMR(D2O,500 MHz)δ:3.74(1H,dd,J=11.5,3.0 Hz,H-2),3.09~3.14(2H,m,H-3),7.17(1H,s,H-2'),7.60(1H,d,J=7.5 Hz,H-4'),7.20(1H,t,J=7.5 Hz,H-5'),7.26(1H,t,J=7.5 Hz,H-6'),7.48(1H,d,J=7.5 Hz,H-7'),3.04(3H,s,OMe);13C NMR(D2O+CD3OD,125 MHz)δ:172.1 (C-1,s),79.7(C-2,d),23.6(C-3,t),125.5(C-2',d),108.0(C-3',s),127.4(C-3'a,s),119.1(C-4', d),120.4(C-5',d),123.0(C-6',d),112.9(C-7',d),137.1(C-7'a,s),52.6(OMe,q)。1H NMR和13C NMR数据和文献报道一致[20]。

肌苷(inosine,11):白色粉末,C10H12N4O5;1H NMR(CD3OD,400 MHz)δ:8.59(1H,s,H-2),8.67 (1H,s,H-8),6.40(1H,d,J=6.0 Hz,H-1'),5.12 (1H,t,J=6.0 Hz,H-2'),4.76(1H,m,H-3'),4.63 (1H,d,J=2.4 Hz,H-4'),4.29(1H,br d,J=12.4 Hz,H-5'a),4.18(1H,dd,J=12.4,2.4 Hz,H-5' b);13C NMR(CD3OD,100 MHz)δ:153.6(C-2,d),149.7(C-4,s),120.3(C-5,s),156.9(C-6,s),141.7(C-8,d),89.8(C-1',d),71.8(C-2',d),75.0(C-3',d),87.1(C-4',d),62.8(C-5',t)。1H NMR和13C NMR数据和文献报道一致[21]。

Tachioside(12):白色粉末,C13H18O8;1H NMR (DMSO-d6,500 MHz)δ:6.66(1H,s,H-3),6.43 (1H,d,J=8.5 Hz,H-5),6.63(1H,d,J=8.5 Hz,H-6),4.64(1H,d,J=7.5 Hz,H-1'),3.71(3H,s,OMe);13C NMR(DMSO-d6,125 MHz)δ:141.4(C-1,s),147.9(C-2,s),102.6(C-3,d),150.8(C-4,s),108.0(C-5,d),115.3(C-6,d),101.8(C-1',d),73.4(C-2',d),77.1(C-3',d),70.0(C-4',d),76.8(C-5',d),60.9(C-6',t),55.6(OMe,q);negative FAB-MS(m/z):301([M-H]-)。1H NMR和13C NMR数据和文献报道一致[22]。

Isotachioside(13):白色粉末,C13H18O8;1H NMR(DMSO-d6,500 MHz)δ:6.38(1H,d,J=2.5 Hz,H-3),6.21(1H,dd,J=9.0,2.5 Hz,H-5),6.87 (1H,d,J=9.0 Hz,H-6),4.66(1H,d,J=7.3 Hz,H-1'),3.68(3H,s,OMe);13C NMR(DMSO-d6,125 MHz)δ:139.4(C-1,s),150.0(C-2,s),101.1(C-3,d),152.9(C-4,s),106.1(C-5,d),117.4(C-6,d),101.6(C-1',d),73.5(C-2',d),77.0(C-3',d),69.9(C-4',d),76.8(C-5',d),60.9(C-6',t),55.7(OMe,q)。1H NMR和13C NMR数据和文献报道一致[22]。

3-O-(β-D-吡喃葡萄糖基)-1-(3,5-二甲氧基-4-羟基苯基)-1-丙酮(14):白色粉末,C17H24O10;1H NMR(CD3OD+DMSO-d6,500 MHz)δ:3.32(2H,m,H-2),4.25(1H,ddd,J=10.3,6.4,6.4 Hz,H-3a),4.01(1H,ddd,J=10.3,6.4,6.4 Hz,H-3b),7.34(2H,s,H-2',6'),4.33(1H,d,J=8.0 Hz,H-1''),3.14(1H,dd,J=8.9,8.0 Hz,,H-2''),3.33 (1H,m,H-3''),3.26(1H,m,H-4''),3.26(1H,m,H-5''),3.82(1H,m,H-6''a),3.65(1H,dd,J= 12.0,4.5 Hz,H-6''b),3.91(6H,s,3',5'-OCH3);13C NMR(CD3OD+DMSO-d6,125 MHz)δ:199.0 (C-1,s),39.5(C-2,t),66.7(C-3,t),128.4(C-1',s),107.5(C-2',6',d),149.2(C-3',5',s),143.2 (C-4',s),104.8(C-1'',d),75.1(C-2'',d),78.1 (C-3'',d),71.7(C-4'',d),78.1(C-5'',d),62.8 (C-6'',d),57.0(3',5'-OCH3,q);negative FAB-MS (m/z):387([M-H]-)。1H NMR和13C NMR数据和文献报道一致[23],并通过2D NMR相关得到证实。

反式异松柏苷(15):白色粉末,C16H22O8;1H NMR(CD3OD,400 MHz)δ:7.02(1H,d,J=1.6 Hz,H-2),6.73(1H,d,J=8.0 Hz,H-5),6.86(1H,dd,J=8.0,1.6 Hz,H-6),6.58(1H,br d,J=16.0 Hz,H-7),6.20(1H,ddd,J=16.0,6.4,6.4 Hz,H-8),4.50(1H,dd,J=12.5,6.4 Hz,H-9a),4.30 (1H,dd,J=12.5,6.4 Hz,H-9b),3.87(3H,s,OCH3),4.37(1H,d,J=8.0 Hz,H-1'),3.28(1H,dd,J=8.9,8.0 Hz,H-2'),3.37(1H,m,H-3'),3.30(1H,overlapped,H-4'),3.30(1H,overlapped,H-5'),3.90(1H,overlapped,H-6'a),3.69(1H,dd,J=11.7,5.6 Hz,H-6'b);13C NMR(CD3OD,100 MHz)δ:130.4(C-1,s),110.6(C-2,d),149.1(C-3,s),147.9(C-4,s),116.2(C-5,d),121.2(C-6,d),134.3(C-7,d),123.7(C-8,d),71.0(C-9,t),56.3(OCH3,q),103.1(C-1',d),75.1(C-2',d),78.1(C-3',d),71.7(C-4',d),78.0(C-5',d),62.8(C-6',t)。1H NMR和13C NMR数据和文献报道一致[24]。

4-[(E)-3-乙氧基-1-丙烯基]-2-甲氧基苯酚(16):白色粉末,C12H16O3;1H NMR(CD3OD,400 MHz)δ:6.99(1H,d,J=2.0 Hz,H-2),6.84(1H,dd,J=8.0,2.0 Hz,H-6),6.72(1H,d,J=8.0,H-5),6.51(1H,d,J=16.0 Hz,H-7),6.13(1H,dt,J =16.0,6.4 Hz,H-8),4.09(2H,dd,J=6.4,1.6 Hz,H-9),3.53(2H,q,J=7.0 Hz,H-1'),1.35 (3H,t,J=7.0 Hz,,H-2'),3.85(3H,s,OCH3);13C NMR(CD3OD,100 MHz)δ:130.1(C-1,s),110.3 (C-2,d),149.0(C-3,s),147.6(C-4,s),116.1(C-5,d),121.0(C-6,d),134.0(C-7,d),123.9(C-8,d),72.4(C-9,t),66.4(C-1',t),15.3(C-2',q),56.2(OCH3,q)。1H NMR和13C NMR数据和文献报道一致[25]。

致谢:本文中化合物的波谱数据由中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室分析中心测定。

1 Xu TZ(徐廷志).Phytogeography of the family Aceraceae.Acta Bot Yunnan(云南植物研究),1996,18:43.

2 Kupchan SM,Takasugi M,Smith RM,et al.Tumor inhibitors.LXII.Structures of acerotin and acerocin.Novel triterpene ester aglycones from the tumor inhibitory saponins of A-cer negundo(maple).J Org Chem,1971,36:1972-1976.

3 Yang H,Sung SH,Kim YC.Two new hepatoprotective stilbene glycosides from Acer mono leaves.J Nat Prod,2005,68:101-103.

4 Yang H,Lee MK,Kim YC.Protective activities of stilbene glycosides from Acer mono leaves against H2O2-induced oxidative damage in primary cultured rat hepatocytes.J Agric Food Chem,2005,53:4182-4186.

5 Kim HJ,Woo ER,Shin CG,et al.A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1(HIV-1)integrase.J Nat Prod,1998,61:145-148.

6 Shi YN,Zhou YP,Long CL,et al.Cycloheximide derivatives from the fruits of Dipteronia dyeriana.Helv Chim Acta,2009,92:1545-1549.

7Li XY(李兴玉),Wang YH(王跃虎),Wang HS(王鸿升),et al.Phenolic derivatives from the leaves of Dipteronia dyeriana.Nat Prod Res Dev(天然产物研究与开发),2010,22: 5-10.

8 Guo R,Luo M,Long CL,et al.Two new lignans from Dipteronia dyeriana.Chin Chem Lett,2008,19:1215-1217.

9 Guo R,Luo M,Long CL,et al.Triterpenoid ester saponins from Dipteronia dyeriana.Helv Chim Acta,2008,91:1728-1735.

10 Li SF,Di YT,Wang YH,et al.Anthraquinones and lignans from Cassia occidentalis.Helv Chim Acta,2010,93:1795-1802.

11 Matsuda N,Kikuchi M.Studies on the constituents of Lonicera species.X.Neolignan glycosides from the leaves of Lonicera gracilipes var.glandulosa Maxim.Chem Pharm Bull,1996,44:1676-1679.

12 Morikawa T,Matsuda H,Nishida N,et al.Structures of new aromatics glycosides from a Japanese folk medicine,the roots of Angelica furcijuga.Chem Pharm Bull,2004,52:1387-1390.

13 Houghton PJ.Lignans and neolignans from Buddleja davidii. Phytochemistry,1985,24:819-826.

14 Kijima K,Otsuka H,Ide T,et al.Sesquiterpene glycosides and sesquilignan glycosides from stems of Alangium premnifolium.Phytochemistry,1998,48:669-676.

15 Cutillo F,Abrosca BD,Greca MD,et al.Lignans and neolignans from Brassica fruticulosa:Effects on seed germination and plant growth.J Agric Food Chem,2003,51:6165-6172.

16 Abe F,Yamauchi T.9α-Hydroxypinoresinol,9α-hydroxymedioresinol and related lignans from Allamanda neriifolia.Phytochemistry,1988,27:575-577.

17 Xu JF(徐建富).Studies on the chemical constituents and bioactivities of Mallotus apelta and Potentillia anserine.Beijing:Chinese Academy of Medical Sciences and Peking U-nion Medical College(中国医学科学院和北京协和医科大学),PhD.2008.

18 Wang JS(汪俊松).Chemical constituents of three Rutaceae plants.Kunming:Kunming Institute of Botany,Chinese Academy of Sciences(中国科学院昆明植物研究所),PhD.2005.

19 Ishikawa T,Takayanagi T,Kitajima J.Water-soluble constituents of cumin:monoterpenoid glucosides.Chem Pharm Bull,2002,50:1471-1478.

20 Lou HX,Yuan HQ,Yamazaki Y,et al,Alkaloids and flavonoids from peanut skins.Planta Med,2001,67:345-349.

21 Gao JM(高锦明),Shen J(沈杰),Zhang AL(张鞍灵),et al.Chemical constituents of the fungus Leccinum extremiorientale,J Org Chem(有机化学),2003,23:853-857.

22 Inoshiri S,Sasaki M,Kohda H,et al.Aromatic glycosides from Berchemia racemosa.Phytochemistry,1987,26:2811-2814.

23 Zhang DM(张东明),Li Y(李媛),Yu SS(庾石山).Glycosides from the stems of Photinia parvifolia.Nat Prod Res Dev (天然产物研究与开发),2004,16:496-499.

24 Nakanishi T,Iida N,Inatomi Y,et al.New neolignan and phenylpropanoid glycosides in Juniperus communis var.depressa.Heterocycles,2004,63:2573-2580.

25 Wang F,Hua HM,Bian X,et al.Two new aromatic compounds from the resin of Styrax tonkinensis(Pier.)Craib.J Asia Nat Prod Res,2006,8:137-141.

Chemical Constituents from the Stems of Dipteronia dyeriana Henry

GUO Rong1,2,WANG Yue-hu1,SHI Ya-na1,3,LI Xing-yu1,4,LI Wen-chang2*,LONG Chun-lin1,5*1Key Laboratory of Economic Plants and Biotechnology,Kunming Institute of Botany,Chinese Academy of Sciences,Kunming 650201,China;2Institute of Industrial Crops,Yunnan Academy of Agricultural Sciences;3Institute of Medicinal Plants,Yunnan Academy of Agricultural Sciences,Kunming 650205,China;4College of Science and Information Engineering,Yunnan Agricultural University,Kunming 650201,China;5College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China

Sixteen compounds were isolated from the EtOH extracts of the branches of Dipteronia dyeriana.Based on spectroscopic methods,they were identified as erythro-4,7,9-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside(1),hyuganoside IIIa(2),hyuganoside IIIb(3),erythro-buddlenol B(4),erythro-7',8'-didehydrobuddlenol B(5),(±)-syringaresinol(6),cleomiscosin A(7),citroside A(8),(4R)-p-menth-1-ene-7,8-diol 7-O-β-D-glucopyranoside(9),2-methoxy-3-(3-indolyl)propanoic acid(10),inosine(11),tachioside(12),isotachioside (13),3-O-(β-D-glucopyranosyl)-1-(3,5-dimethoxy-4-hydroxyphenyl)-1-propanone(14),trans-isoconiferin(15)and 4-[(E)-3-ethoxyprop-1-enyl]-2-methoxyphenol(16).Compound 5 was a new sesquilignan,while other compounds were obtained from the genus for the first time.

Aceraceae;Dipteronia dyeriana;lignans;cumarins;terpenoids

1001-6880(2012)08-1007-07

2011-12-16 接受日期:2012-02-23

国家自然科学基金项目(20972166,31070288,31161140345);教育部和国家外专局项目(B08044、MUC985-9、98506-01000101);科技部国家科技基础性工作专项重点项目(2008FY110400-2-2);中国科学院知识创新工程项目

*通讯作者 Tel:86-532-88963253;E-mail:long@mail.kib.ac.cn; lwchang2003@yahoo.com.cn

R284.2;Q946.91

A

猜你喜欢
脂素柱层析甲氧基
深绿卷柏中木脂素成分及10个木脂素结构的修订
1-[(2-甲氧基-4-乙氧基)-苯基]-3-(3-(4-氧香豆素基)苯基)硫脲的合成
亚麻木脂素提取液渗透模型建立与验证
泥炭组成成分的GC-MS分析
小蜡叶民间药用物质基础提取模式探索
2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
柱层析用硅胶对羌活中主要成分的影响
DAD-HPLC法同时测定龙须藤总黄酮中5种多甲氧基黄酮
厚朴酚中压硅胶柱层析纯化工艺的优化
11个品种来源陈皮中多甲氧基黄酮的测定