袁霞
课程专家叶澜教授指出:“课堂无时无刻地在运动变化着,我们可以深切体验、感受到知识、思维、情感的流动,知识、能力、情感的生成,也只有这样的生成,才是课程改革后应该有的课堂. ”生成教学是新课程改革的核心理念之一. 针对传统教学的弊病,新课程改革要求从生命的高度,用动态生成的观点看待课堂教学. 课堂教学不只是一种特殊的认识过程,而且是师生人生中的一次重要的生命经历,它必须是真实的,体现学生主体地位的. 课程内容、课程的具体实施以及学生对课程的理解也是动态生成的. 下面要叙述的故事,是我的初一数学课堂生成教学的一次案例.
案例表述
在新的初一数学教材上有这样的一道习题:某市出租车收费标准为:起步价10元,3千米后每千米价1.8元,则某人乘坐出租车x(x > 3)千米的付费为多少元?
在课堂上,学生根据题中的条件,顺理成章地列出代数式:10 + 1.8(x - 3)即1.8x + 4.6. 接着我要求学生自己随意地取几个x 的值,计算一下应付的费用,让他们体会一下随着x的变化付费会随之变化的关系,激发他们的探索欲望. 孰料一场争论就在这几分钟的计算过程中酝酿产生了. 首先发难的是爱钻“牛角尖”的刘任激同学:“老师,我认为这个代数式有问题. 题中指出3千米后每千米价1.8元,那么不足千米怎么算啊?”一石激起千层浪,学生一下子就讨论开了. 急性子的同学立马拿着自己的演算稿嚷道:“怎么不能算!比如行程为4.3千米,那么乘客要付10 + 1.8(4.3 - 3) = 12.34(元),这不很清楚吗?”
“嘿嘿,乘出租车怎么会付角票和分钱呢?”姜鹏同学说完,脸上露出得意的神色.
“四舍五入不就得了,付12元呗. ”心直口快的施正其同学反击说.
“行不通的,出租车司机肯定是收13元的,他才不会舍掉呢!”同学小声地议论着.
姜鹏同学得意洋洋地说:“对!四舍五入有时是行不通的. 比如,有载重量为10吨的车最多能装多少块质量为4吨的铁锭? = 2.5块,你说能四舍五入装3块吗?”
“那不足千米作1千米算,10 + 1.8(5 - 3) = 13.6 ≈ 14(元).”
“那乘客太亏了吧!”施正其同学涨红了脸说.
……
这确实是一道脱离实际的“错题”. 看着“乱哄哄”的课堂,是直截了当地告诉学生,课本上的习题错了呢?还是跟学生说个明白?我的头脑一片“空白”. 作为数学老师,实事求是地告诉学生,习题是错了,也不失严谨的科学态度. 但是,看到争得面红耳赤的学生,我突然意识到我不仅仅是一名数学教师,我还是一名教师,我传授给学生的知识难道就是局限于数学范畴吗?开了锅的场面已经有点控制不住了,似乎有一种责任感驱使着我,还应该告诉学生更多……我定下了神,想到了学生的学习应该要走进生活,何不顺水推舟让学习回归学生的生活,让学生在了解出租车车费到底是如何计算的过程中学到数学教材上没有的知识.
案例发展
我提出了以下几个问题:出租车公司明文规定的计价方式有哪几种?
在打表计价的方式中,超过起步价规定的路程后,计价器是怎么跳动的?
计价器上显示的费用(比如产生角票和分钱),一般是采用什么方法收取的?
在实际生活中,还另外存在哪些特殊计价方式?
事实上,可分为打表计费和不打表计费两种计价方式. 乘客司机双方先约定价格,不用打表计价;若是搭顺路车或空车回程,则车价相应地就便宜了. 出租车一般采用收尾法计费方式,计价器每百米跳动一次. 比如,3千米过后,是按100 米计价,不满100米也算通过100米计. 如果走远程,每1千米还要加50%的回程费(原来是每千米1.8元,加了回程就是每千米2.7元),为了进一步让学生理解所学知识,我又为学生设置了两个学习情景.
情景一:10立方米煤油,用载重量为3立方米的车装,共装运几车(3.3车)?按照课本上的数学知识,结果应该是四舍五入,运3车,实际采用“收尾法”,应运4车.
情景二:有载重量为10吨的货轮,问:最多能装几块质量为4吨的铁锭(2.5)?按照课本上的数学知识,结果应该是四舍五入,运3块,实际采用“去尾法”,运2块.
案例评价
课本编者无意的疏忽引发了一场课堂的争论,而我恰当地利用了教材中出现的这个“暇”,不但丰富了学生的生活经验,而且拓展了学生的知识面,使教学的过程更趋完美. 学生的思维方式不同于成人的思维方式,这就决定于课堂教学是动态的. 学生每一次思维火花的闪烁,都是教师动态生成课程的基点. 教师不能放过学生瞬间闪烁的火花,要千方百计为学生创设培育创新意识、培养创新能力的条件.
案例启示
从这个案例的实践中引导学生“学会学习、学会生活、学会创造”,克服传统教育“重教有余,重学不足”的弊端,切实贯彻“以人为本”的教学思想.